Abstract

One-dimensional light harvesting structures with a realistic geometry nano-patterned on an opaque metallic film are optimized to render high transmission efficiencies at optical and infrared frequencies. Simple design rules are developed for the particular case of a slit-groove array with a given number of grooves that are symmetrically distributed with respect to a central slit. These rules take advantage of the hybridization of Fabry-Perot modes in the slit and surface modes of the corrugated metal surface. Same design rules apply for optical and infrared frequencies. The parameter space of the groove array is also examined with a conjugate gradient optimization algorithm that used as a seed the geometries optimized following physical intuition. Both uniform and nonuniform groove arrays are considered. The largest transmission enhancement, with respect to a uniform array, is obtained for a chirped groove profile. Such relative enhancement is a function of the wavelength. It decreases from 39 % in the optical part of the spectrum to 15 % at the long wavelength infrared.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London)445, 39–46 (2007).
    [CrossRef]
  2. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
    [CrossRef]
  3. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
    [CrossRef] [PubMed]
  4. T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26, 1972–1974 (2001).
    [CrossRef]
  5. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003).
    [CrossRef] [PubMed]
  6. T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys.44, L170–L172 (2005).
    [CrossRef]
  7. L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett.95, 011113 (2009).
    [CrossRef]
  8. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13, 429–432 (2002).
    [CrossRef]
  9. A. Degiron and T. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12, 3694–3700 (2004).
    [CrossRef] [PubMed]
  10. O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett.99, 043902 (2007).
    [CrossRef] [PubMed]
  11. H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved lengths,” Appl. Phys. Lett.91, 093111 (2007).
    [CrossRef]
  12. J. Lu, C. Petre, E. Yablonovitch, and J. Conway, “Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an ag-sio2 interface,” J. Opt. Soc. Am. B24, 2268–2272 (2007).
    [CrossRef]
  13. Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92, 011128 (2008).
    [CrossRef]
  14. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2, 161–164 (2008).
    [CrossRef]
  15. S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19, 10429–10442 (2011).
    [CrossRef]
  16. W. Suetaka, Surface Infrared and Raman Spectroscopy - Methods and Applications (Kluwer Academic Publishers, 1995).
  17. J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and J. K. R. Rodrigues, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Ann. Rev. Phys. Chem.59, 179–202 (2008).
    [CrossRef]
  18. K.-L. Lee, S.-H. Wu, C.-W. Lee, and P.-K. Wei, “Sensitive biosensors using fano resonance in single gold nanoslit with periodic grooves,” Opt. Express19, 24530–24539 (2011).
    [CrossRef] [PubMed]
  19. K. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett.31, 1528–1530 (2006).
    [CrossRef] [PubMed]
  20. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, and J. H. Connor, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108, 11784–11789 (2011).
    [CrossRef] [PubMed]
  21. R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics6, 409–411 (2012).
    [CrossRef]
  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, 2nd ed. (Cambridge University Press, New York, 1986).
  23. J. D. Jackson, Classical Electrodynamics, 3rd ed (John Wiley, New York, 1999).
  24. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
    [CrossRef]
  25. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
    [CrossRef]
  26. K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, “Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures,” Jpn. J. Appl. Phys.44, L1005–L1007 (2005).
    [CrossRef]
  27. K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J.-I. Shikata, and H. Ito, “Therahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett.89, 201120 (2006).
    [CrossRef]
  28. D. Lin, C. Chang, Y. Chen, D. Yang, M. Lin, J. Yeh, J. Liu, C. Kuan, C. Yeh, and C. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express14, 3503–3511 (2006).
    [CrossRef] [PubMed]
  29. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, London, 1985).
  31. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  32. F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Normal-incidence scattering of surface plasmon polaritons by one-dimensional nanoindentations: a multimodal description,” Appl. Phys. A89, 251–258 (2007).
    [CrossRef]
  33. F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys.10, 105017 (2008).
    [CrossRef]
  34. F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B72, 161405(R) (2005).
    [CrossRef]
  35. R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag.AP-28, 616–622 (1980).
    [CrossRef]
  36. F. de León-Pérez, F. J. García-Vidal, and L. Martín-Moreno, “Role of surface plasmon polaritons in the optical response of a hole pair,” Phys. Rev. B84, 125414 (2011).
    [CrossRef]

2012 (1)

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics6, 409–411 (2012).
[CrossRef]

2011 (4)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, and J. H. Connor, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108, 11784–11789 (2011).
[CrossRef] [PubMed]

F. de León-Pérez, F. J. García-Vidal, and L. Martín-Moreno, “Role of surface plasmon polaritons in the optical response of a hole pair,” Phys. Rev. B84, 125414 (2011).
[CrossRef]

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19, 10429–10442 (2011).
[CrossRef]

K.-L. Lee, S.-H. Wu, C.-W. Lee, and P.-K. Wei, “Sensitive biosensors using fano resonance in single gold nanoslit with periodic grooves,” Opt. Express19, 24530–24539 (2011).
[CrossRef] [PubMed]

2010 (1)

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

2009 (1)

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett.95, 011113 (2009).
[CrossRef]

2008 (5)

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92, 011128 (2008).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2, 161–164 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and J. K. R. Rodrigues, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Ann. Rev. Phys. Chem.59, 179–202 (2008).
[CrossRef]

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys.10, 105017 (2008).
[CrossRef]

2007 (6)

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Normal-incidence scattering of surface plasmon polaritons by one-dimensional nanoindentations: a multimodal description,” Appl. Phys. A89, 251–258 (2007).
[CrossRef]

J. Lu, C. Petre, E. Yablonovitch, and J. Conway, “Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an ag-sio2 interface,” J. Opt. Soc. Am. B24, 2268–2272 (2007).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
[CrossRef]

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett.99, 043902 (2007).
[CrossRef] [PubMed]

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved lengths,” Appl. Phys. Lett.91, 093111 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London)445, 39–46 (2007).
[CrossRef]

2006 (3)

2005 (3)

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B72, 161405(R) (2005).
[CrossRef]

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, “Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures,” Jpn. J. Appl. Phys.44, L1005–L1007 (2005).
[CrossRef]

T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys.44, L170–L172 (2005).
[CrossRef]

2004 (2)

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

A. Degiron and T. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12, 3694–3700 (2004).
[CrossRef] [PubMed]

2003 (1)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003).
[CrossRef] [PubMed]

2002 (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13, 429–432 (2002).
[CrossRef]

2001 (1)

1980 (1)

R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag.AP-28, 616–622 (1980).
[CrossRef]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Artar, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, and J. H. Connor, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108, 11784–11789 (2011).
[CrossRef] [PubMed]

Auckland, D. T.

R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag.AP-28, 616–622 (1980).
[CrossRef]

Bozhevolnyi, S. I.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
[CrossRef]

Brucoli, G.

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys.10, 105017 (2008).
[CrossRef]

Caglayan, H.

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92, 011128 (2008).
[CrossRef]

Carretero-Palacios, S.

Cetin, A. E.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, and J. H. Connor, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108, 11784–11789 (2011).
[CrossRef] [PubMed]

Chang, C.

Chen, Y.

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Coe, J. V.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and J. K. R. Rodrigues, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Ann. Rev. Phys. Chem.59, 179–202 (2008).
[CrossRef]

Colak, E.

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92, 011128 (2008).
[CrossRef]

Connor, J. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, and J. H. Connor, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108, 11784–11789 (2011).
[CrossRef] [PubMed]

Conway, J.

de León-Pérez, F.

F. de León-Pérez, F. J. García-Vidal, and L. Martín-Moreno, “Role of surface plasmon polaritons in the optical response of a hole pair,” Phys. Rev. B84, 125414 (2011).
[CrossRef]

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett.95, 011113 (2009).
[CrossRef]

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys.10, 105017 (2008).
[CrossRef]

Degiron, A.

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
[CrossRef]

Devaux, E.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
[CrossRef]

Dintinger, J.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

Du, C.

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved lengths,” Appl. Phys. Lett.91, 093111 (2007).
[CrossRef]

Dunbar, L. A.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett.95, 011113 (2009).
[CrossRef]

Ebbesen, T.

Ebbesen, T. W.

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19, 10429–10442 (2011).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2, 161–164 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London)445, 39–46 (2007).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13, 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26, 1972–1974 (2001).
[CrossRef]

Eckert, R.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett.95, 011113 (2009).
[CrossRef]

Fainman, Y.

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, 2nd ed. (Cambridge University Press, New York, 1986).

Fujikata, J.

T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys.44, L170–L172 (2005).
[CrossRef]

Garcia-Vidal, F. J.

García-Vidal, F. J.

F. de León-Pérez, F. J. García-Vidal, and L. Martín-Moreno, “Role of surface plasmon polaritons in the optical response of a hole pair,” Phys. Rev. B84, 125414 (2011).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett.95, 011113 (2009).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys.10, 105017 (2008).
[CrossRef]

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Normal-incidence scattering of surface plasmon polaritons by one-dimensional nanoindentations: a multimodal description,” Appl. Phys. A89, 251–258 (2007).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
[CrossRef]

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B72, 161405(R) (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003).
[CrossRef] [PubMed]

Genet, C.

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19, 10429–10442 (2011).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2, 161–164 (2008).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London)445, 39–46 (2007).
[CrossRef]

Gonzalez, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
[CrossRef]

Grenet, E.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett.95, 011113 (2009).
[CrossRef]

Guillaumée, M.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett.95, 011113 (2009).
[CrossRef]

Harrington, R. F.

R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag.AP-28, 616–622 (1980).
[CrossRef]

Hatakoshi, G.

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, “Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures,” Jpn. J. Appl. Phys.44, L1005–L1007 (2005).
[CrossRef]

Heer, J. M.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and J. K. R. Rodrigues, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Ann. Rev. Phys. Chem.59, 179–202 (2008).
[CrossRef]

Hooft, G. W.

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett.99, 043902 (2007).
[CrossRef] [PubMed]

Huang, M.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, and J. H. Connor, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108, 11784–11789 (2011).
[CrossRef] [PubMed]

Ikari, T.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J.-I. Shikata, and H. Ito, “Therahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett.89, 201120 (2006).
[CrossRef]

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, “Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures,” Jpn. J. Appl. Phys.44, L1005–L1007 (2005).
[CrossRef]

Ishi, T.

T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys.44, L170–L172 (2005).
[CrossRef]

Ishihara, K.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J.-I. Shikata, and H. Ito, “Therahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett.89, 201120 (2006).
[CrossRef]

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, “Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures,” Jpn. J. Appl. Phys.44, L1005–L1007 (2005).
[CrossRef]

Ito, H.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J.-I. Shikata, and H. Ito, “Therahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett.89, 201120 (2006).
[CrossRef]

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, “Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures,” Jpn. J. Appl. Phys.44, L1005–L1007 (2005).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed (John Wiley, New York, 1999).

Janssen, O. T. A.

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett.99, 043902 (2007).
[CrossRef] [PubMed]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Khanikaev, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, and J. H. Connor, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108, 11784–11789 (2011).
[CrossRef] [PubMed]

Krenn, J. R.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
[CrossRef]

Kuan, C.

Kuipers, L.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2, 161–164 (2008).
[CrossRef]

Lee, C.

Lee, C.-W.

Lee, K.-L.

Lewen, G. D.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13, 429–432 (2002).
[CrossRef]

Lezec, H. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13, 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26, 1972–1974 (2001).
[CrossRef]

Li, Z.

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92, 011128 (2008).
[CrossRef]

Lin, D.

Lin, M.

Linke, R. A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13, 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26, 1972–1974 (2001).
[CrossRef]

Liu, J.

López-Tejeira, F.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett.95, 011113 (2009).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Normal-incidence scattering of surface plasmon polaritons by one-dimensional nanoindentations: a multimodal description,” Appl. Phys. A89, 251–258 (2007).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
[CrossRef]

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B72, 161405(R) (2005).
[CrossRef]

Lu, J.

Luo, X.

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved lengths,” Appl. Phys. Lett.91, 093111 (2007).
[CrossRef]

Mahboub, O.

Martin-Moreno, L.

Martín-Moreno, L.

F. de León-Pérez, F. J. García-Vidal, and L. Martín-Moreno, “Role of surface plasmon polaritons in the optical response of a hole pair,” Phys. Rev. B84, 125414 (2011).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett.95, 011113 (2009).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys.10, 105017 (2008).
[CrossRef]

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Normal-incidence scattering of surface plasmon polaritons by one-dimensional nanoindentations: a multimodal description,” Appl. Phys. A89, 251–258 (2007).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
[CrossRef]

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B72, 161405(R) (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003).
[CrossRef] [PubMed]

Minamide, H.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J.-I. Shikata, and H. Ito, “Therahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett.89, 201120 (2006).
[CrossRef]

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, “Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures,” Jpn. J. Appl. Phys.44, L1005–L1007 (2005).
[CrossRef]

Mousavi, S. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, and J. H. Connor, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108, 11784–11789 (2011).
[CrossRef] [PubMed]

Nahata, A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13, 429–432 (2002).
[CrossRef]

Ohashi, K.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J.-I. Shikata, and H. Ito, “Therahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett.89, 201120 (2006).
[CrossRef]

T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys.44, L170–L172 (2005).
[CrossRef]

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, “Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures,” Jpn. J. Appl. Phys.44, L1005–L1007 (2005).
[CrossRef]

Ozbay, E.

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92, 011128 (2008).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, London, 1985).

Pang, L.

Pellegrin, K. M.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13, 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26, 1972–1974 (2001).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

Petre, C.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, 2nd ed. (Cambridge University Press, New York, 1986).

Radko, I. P.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
[CrossRef]

Rodrigo, S. G.

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19, 10429–10442 (2011).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
[CrossRef]

Rodrigues, J. K. R.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and J. K. R. Rodrigues, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Ann. Rev. Phys. Chem.59, 179–202 (2008).
[CrossRef]

Santschi, C.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett.95, 011113 (2009).
[CrossRef]

Shi, H.

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved lengths,” Appl. Phys. Lett.91, 093111 (2007).
[CrossRef]

Shikata, J.-I.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J.-I. Shikata, and H. Ito, “Therahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett.89, 201120 (2006).
[CrossRef]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2, 161–164 (2008).
[CrossRef]

Stanley, R.

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics6, 409–411 (2012).
[CrossRef]

Stanley, R. P.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett.95, 011113 (2009).
[CrossRef]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Suetaka, W.

W. Suetaka, Surface Infrared and Raman Spectroscopy - Methods and Applications (Kluwer Academic Publishers, 1995).

Teeters-Kennedy, S.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and J. K. R. Rodrigues, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Ann. Rev. Phys. Chem.59, 179–202 (2008).
[CrossRef]

Tetz, K.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, 2nd ed. (Cambridge University Press, New York, 1986).

Thio, T.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13, 429–432 (2002).
[CrossRef]

T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26, 1972–1974 (2001).
[CrossRef]

Tian, H.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and J. K. R. Rodrigues, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Ann. Rev. Phys. Chem.59, 179–202 (2008).
[CrossRef]

Urbach, H. P.

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett.99, 043902 (2007).
[CrossRef] [PubMed]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, 2nd ed. (Cambridge University Press, New York, 1986).

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
[CrossRef]

Wei, P.-K.

Wu, S.-H.

Yablonovitch, E.

Yang, D.

Yanik, A. A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, and J. H. Connor, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108, 11784–11789 (2011).
[CrossRef] [PubMed]

Yeh, C.

Yeh, J.

Yokoyama, H.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J.-I. Shikata, and H. Ito, “Therahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett.89, 201120 (2006).
[CrossRef]

Ann. Rev. Phys. Chem. (1)

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and J. K. R. Rodrigues, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Ann. Rev. Phys. Chem.59, 179–202 (2008).
[CrossRef]

Appl. Phys. A (1)

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Normal-incidence scattering of surface plasmon polaritons by one-dimensional nanoindentations: a multimodal description,” Appl. Phys. A89, 251–258 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J.-I. Shikata, and H. Ito, “Therahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett.89, 201120 (2006).
[CrossRef]

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett.95, 011113 (2009).
[CrossRef]

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved lengths,” Appl. Phys. Lett.91, 093111 (2007).
[CrossRef]

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92, 011128 (2008).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag.AP-28, 616–622 (1980).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, “Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures,” Jpn. J. Appl. Phys.44, L1005–L1007 (2005).
[CrossRef]

T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys.44, L170–L172 (2005).
[CrossRef]

Nanotechnology (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13, 429–432 (2002).
[CrossRef]

Nat. Photonics (2)

R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics6, 409–411 (2012).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2, 161–164 (2008).
[CrossRef]

Nat. Phys. (1)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007).
[CrossRef]

Nature (London) (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London)445, 39–46 (2007).
[CrossRef]

New J. Phys. (2)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008).
[CrossRef]

F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys.10, 105017 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (3)

F. de León-Pérez, F. J. García-Vidal, and L. Martín-Moreno, “Role of surface plasmon polaritons in the optical response of a hole pair,” Phys. Rev. B84, 125414 (2011).
[CrossRef]

F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B72, 161405(R) (2005).
[CrossRef]

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003).
[CrossRef] [PubMed]

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett.99, 043902 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, and J. H. Connor, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108, 11784–11789 (2011).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004).
[CrossRef] [PubMed]

Other (5)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, 2nd ed. (Cambridge University Press, New York, 1986).

J. D. Jackson, Classical Electrodynamics, 3rd ed (John Wiley, New York, 1999).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, London, 1985).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

W. Suetaka, Surface Infrared and Raman Spectroscopy - Methods and Applications (Kluwer Academic Publishers, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of the slit-groove array on a free-standing gold film of thickness hs. The slit of width ws is surrounded by 2Ng grooves (of width wg, depth hg, and period P). The distance from the slit to the first groove, dsg, is in principle different from P.

Fig. 2
Fig. 2

(a) Normalized-to-area transmittance (η) for a SGA as a function of the groove period P for groove depth increasing from hg=110 nm to 130 nm at λ = 1.35 μm. P is normalized to λspp = 1.33 μm. (b) η as a function of the slit-first groove distance dsg for several values of P/λspp taken from the black curve of (a) (hg = wg = 125 nm). (c) η versus the aspect radio (r = wg/hg) for the optimal geometry of (b): P = 0.95λspp and dsg = 0.93P.

Fig. 3
Fig. 3

CG optimization of a SGA for λ = 1.35 μm and Ng increasing from 2 to 42. (a) Normalized-to-area transmittance, η, and FWHM. (b) Period, P, and slit-nearest groove distance, dsg. (c) Groove depth, hg. (d) Aspect radio, r = wg/hg, and groove width, wg.

Fig. 4
Fig. 4

Spectra of the SGA optimized with the CG algorithm for the target wavelengths (a) λ = 1.35 μm, (b) λ = 4.0 μm, and (c) λ = 10.6 μm. Full {hg, wg, xg} and one-parameter optimizations ({hg}, {wg}, and {xg}) are compared with the optimization for a uniform SGA.

Fig. 5
Fig. 5

Profiles obtained for λ = 1.35 μm in the CG optimizations of the uniform and nonuniform SGAs. (a) Profiles of groove depths. (b) Profiles of groove widths. (c) Profile of groove positions. (d) Groove profiles as a function of λ.

Tables (2)

Tables Icon

Table 1 Optimal geometries obtained by a CG optimization of a uniform SGA with Ng = 10 grooves for different values of the wavelength. Last column reports calculations for a PEC at λ = 10.6 μm. Last row gives the values of η for a SGA scaled by λ with respect to the SGA made of gold and optimized at λ = 10.6 μm.

Tables Icon

Table 2 FWHM of η as a function of each parameter reported in 1. In particular, the FWHM for η versus λ is the bandwidth. Last column reports calculations for a PEC at λ = 10.6 μm.

Metrics