Abstract

We design and experimentally demonstrate an ultrashort integrated polarization splitter on silicon-on-insulator (SOI) platform. Our polarization splitter uses a hybrid plasmonic waveguide as the middle waveguide in a three-core arrangement to achieve large birefringence, allowing only transverse-magnetic (TM) polarized light to directionally couple to the cross port of the directional coupler. Finite-difference time-domain (FDTD) and eigenmode expansive (EME) calculations show that the splitter can achieve an extinction ratio of greater than 15 dB with less than 0.5 dB insertion losses. The polarization splitter was fabricated on SOI platform using standard complementary metal-oxide-semiconductor (CMOS) technology and measured at telecommunications wavelengths. Extinction ratios of 12.3 dB and 13.9 dB for the transverse-electric (TE) and TM polarizations were obtained, together with insertion losses of 2.8 dB and 6.0 dB.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
    [CrossRef]
  2. A. Hosseini, S. Rahimi, X. Xu, D. Kwong, J. Covey, and R. T. Chen, “Ultracompact and fabrication-tolerant integrated polarization splitter,” Opt. Lett.36(20), 4047–4049 (2011).
    [CrossRef] [PubMed]
  3. B. K. Yang, S. Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett.21(7), 432–434 (2009).
    [CrossRef]
  4. I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett.17(1), 100–102 (2005).
    [CrossRef]
  5. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express14(25), 12401–12408 (2006).
    [CrossRef] [PubMed]
  6. M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett.30(9), 967–969 (2005).
    [CrossRef] [PubMed]
  7. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl.1(3), 1–14 (2012).
    [CrossRef]
  8. X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett.89(17), 171115 (2006).
    [CrossRef]
  9. S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett.98(15), 151101 (2011).
    [CrossRef]
  10. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett.36(13), 2590–2592 (2011).
    [CrossRef] [PubMed]
  11. D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express19(19), 18614–18620 (2011).
    [CrossRef] [PubMed]
  12. C. Y. Tai, S. H. Chang, and T. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett.19(19), 1448–1450 (2007).
    [CrossRef]
  13. F. Liu, Y. Rao, X. Tang, R. Wan, Y. Huang, W. Zhang, and J. Peng, “Hybrid three-arm coupler with long range surface plasmon polariton and dielectric waveguides,” Appl. Phys. Lett.90(24), 241120 (2007).
    [CrossRef]
  14. C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G.-C. Guo, “Broadband integrated polarization beam splitter with surface plasmon,” Opt. Lett.36(18), 3630–3632 (2011).
    [CrossRef] [PubMed]
  15. F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
    [CrossRef]
  16. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
    [CrossRef]
  17. H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
    [CrossRef]
  18. S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of vertical Cu/SiO2/Si hybrid plasmonic waveguide components on an SOI platform,” IEEE Photon. Technol. Lett.24(14), 1224–1226 (2012).
    [CrossRef]
  19. S. Zhu, G. Q. Lo, and D. L. Kwong, “Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths,” Opt. Express20(14), 15232–15246 (2012).
    [CrossRef] [PubMed]
  20. F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett.37(16), 3372–3374 (2012).
    [CrossRef]
  21. J. Donnelly, “Limitations on power-transfer efficiency in three-guide optical couplers,” IEEE J. Quantum Electron.22(5), 610–616 (1986).
    [CrossRef]
  22. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
    [CrossRef] [PubMed]
  23. S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960).
    [CrossRef]
  24. http://www.lumerical.com

2012

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl.1(3), 1–14 (2012).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of vertical Cu/SiO2/Si hybrid plasmonic waveguide components on an SOI platform,” IEEE Photon. Technol. Lett.24(14), 1224–1226 (2012).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths,” Opt. Express20(14), 15232–15246 (2012).
[CrossRef] [PubMed]

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett.37(16), 3372–3374 (2012).
[CrossRef]

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
[CrossRef]

2011

2010

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

2009

B. K. Yang, S. Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett.21(7), 432–434 (2009).
[CrossRef]

2008

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

2007

C. Y. Tai, S. H. Chang, and T. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett.19(19), 1448–1450 (2007).
[CrossRef]

F. Liu, Y. Rao, X. Tang, R. Wan, Y. Huang, W. Zhang, and J. Peng, “Hybrid three-arm coupler with long range surface plasmon polariton and dielectric waveguides,” Appl. Phys. Lett.90(24), 241120 (2007).
[CrossRef]

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

2006

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett.89(17), 171115 (2006).
[CrossRef]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express14(25), 12401–12408 (2006).
[CrossRef] [PubMed]

2005

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett.30(9), 967–969 (2005).
[CrossRef] [PubMed]

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett.17(1), 100–102 (2005).
[CrossRef]

1986

J. Donnelly, “Limitations on power-transfer efficiency in three-guide optical couplers,” IEEE J. Quantum Electron.22(5), 610–616 (1986).
[CrossRef]

1960

S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960).
[CrossRef]

Ao, X.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett.89(17), 171115 (2006).
[CrossRef]

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett.17(1), 100–102 (2005).
[CrossRef]

Bai, P.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl.1(3), 1–14 (2012).
[CrossRef]

Bowers, J. E.

Chang, S. H.

C. Y. Tai, S. H. Chang, and T. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett.19(19), 1448–1450 (2007).
[CrossRef]

Chen, R. T.

Chen, X. D.

Chiu, T.

C. Y. Tai, S. H. Chang, and T. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett.19(19), 1448–1450 (2007).
[CrossRef]

Chu, H. S.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

Covey, J.

Crozier, K. B.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett.98(15), 151101 (2011).
[CrossRef]

Cui, J. M.

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett.17(1), 100–102 (2005).
[CrossRef]

Dai, D.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl.1(3), 1–14 (2012).
[CrossRef]

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
[CrossRef]

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett.37(16), 3372–3374 (2012).
[CrossRef]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett.36(13), 2590–2592 (2011).
[CrossRef] [PubMed]

D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express19(19), 18614–18620 (2011).
[CrossRef] [PubMed]

Dong, C. H.

Donnelly, J.

J. Donnelly, “Limitations on power-transfer efficiency in three-guide optical couplers,” IEEE J. Quantum Electron.22(5), 610–616 (1986).
[CrossRef]

Fukuda, H.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Guo, G.-C.

Han, Z. F.

Haus, H. A.

He, S.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett.89(17), 171115 (2006).
[CrossRef]

Hegde, R.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

Hosseini, A.

Hu, J.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett.98(15), 151101 (2011).
[CrossRef]

Huang, Y.

F. Liu, Y. Rao, X. Tang, R. Wan, Y. Huang, W. Zhang, and J. Peng, “Hybrid three-arm coupler with long range surface plasmon polariton and dielectric waveguides,” Appl. Phys. Lett.90(24), 241120 (2007).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett.30(9), 967–969 (2005).
[CrossRef] [PubMed]

Itabashi, S.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett.17(1), 100–102 (2005).
[CrossRef]

Kwong, D.

Kwong, D. L.

Li, E. P.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

Lin, S.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett.98(15), 151101 (2011).
[CrossRef]

Liow, T. Y.

Liu, F.

F. Liu, Y. Rao, X. Tang, R. Wan, Y. Huang, W. Zhang, and J. Peng, “Hybrid three-arm coupler with long range surface plasmon polariton and dielectric waveguides,” Appl. Phys. Lett.90(24), 241120 (2007).
[CrossRef]

Liu, L.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett.89(17), 171115 (2006).
[CrossRef]

Lo, G. Q.

Lou, F.

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett.37(16), 3372–3374 (2012).
[CrossRef]

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Peng, J.

F. Liu, Y. Rao, X. Tang, R. Wan, Y. Huang, W. Zhang, and J. Peng, “Hybrid three-arm coupler with long range surface plasmon polariton and dielectric waveguides,” Appl. Phys. Lett.90(24), 241120 (2007).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Rahimi, S.

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Rao, Y.

F. Liu, Y. Rao, X. Tang, R. Wan, Y. Huang, W. Zhang, and J. Peng, “Hybrid three-arm coupler with long range surface plasmon polariton and dielectric waveguides,” Appl. Phys. Lett.90(24), 241120 (2007).
[CrossRef]

Ren, X. F.

Roberts, S.

S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960).
[CrossRef]

Shin, S. Y.

B. K. Yang, S. Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett.21(7), 432–434 (2009).
[CrossRef]

Shinojima, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Sun, F. W.

Tai, C. Y.

C. Y. Tai, S. H. Chang, and T. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett.19(19), 1448–1450 (2007).
[CrossRef]

Tang, X.

F. Liu, Y. Rao, X. Tang, R. Wan, Y. Huang, W. Zhang, and J. Peng, “Hybrid three-arm coupler with long range surface plasmon polariton and dielectric waveguides,” Appl. Phys. Lett.90(24), 241120 (2007).
[CrossRef]

Thylen, L.

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
[CrossRef]

Tsuchizawa, T.

Wan, R.

F. Liu, Y. Rao, X. Tang, R. Wan, Y. Huang, W. Zhang, and J. Peng, “Hybrid three-arm coupler with long range surface plasmon polariton and dielectric waveguides,” Appl. Phys. Lett.90(24), 241120 (2007).
[CrossRef]

Wang, Z.

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
[CrossRef]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett.36(13), 2590–2592 (2011).
[CrossRef] [PubMed]

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett.30(9), 967–969 (2005).
[CrossRef] [PubMed]

Wosinski, L.

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
[CrossRef]

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett.37(16), 3372–3374 (2012).
[CrossRef]

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett.89(17), 171115 (2006).
[CrossRef]

Xu, X.

Yamada, K.

Yang, B. K.

B. K. Yang, S. Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett.21(7), 432–434 (2009).
[CrossRef]

Zhang, D.

B. K. Yang, S. Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett.21(7), 432–434 (2009).
[CrossRef]

Zhang, W.

F. Liu, Y. Rao, X. Tang, R. Wan, Y. Huang, W. Zhang, and J. Peng, “Hybrid three-arm coupler with long range surface plasmon polariton and dielectric waveguides,” Appl. Phys. Lett.90(24), 241120 (2007).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Zhu, S.

Zou, C. L.

Appl. Phys. Lett.

X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett.89(17), 171115 (2006).
[CrossRef]

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett.98(15), 151101 (2011).
[CrossRef]

F. Liu, Y. Rao, X. Tang, R. Wan, Y. Huang, W. Zhang, and J. Peng, “Hybrid three-arm coupler with long range surface plasmon polariton and dielectric waveguides,” Appl. Phys. Lett.90(24), 241120 (2007).
[CrossRef]

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
[CrossRef]

IEEE J. Quantum Electron.

J. Donnelly, “Limitations on power-transfer efficiency in three-guide optical couplers,” IEEE J. Quantum Electron.22(5), 610–616 (1986).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Y. Tai, S. H. Chang, and T. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett.19(19), 1448–1450 (2007).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of vertical Cu/SiO2/Si hybrid plasmonic waveguide components on an SOI platform,” IEEE Photon. Technol. Lett.24(14), 1224–1226 (2012).
[CrossRef]

B. K. Yang, S. Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett.21(7), 432–434 (2009).
[CrossRef]

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett.17(1), 100–102 (2005).
[CrossRef]

Light: Sci. Appl.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl.1(3), 1–14 (2012).
[CrossRef]

Nat. Photonics

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960).
[CrossRef]

Other

http://www.lumerical.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Top view of the proposed 3-core directional coupler based polarization splitter. Only TM-polarized light can couple to the waveguide of the cross port. TE-polarized light is guided to the bar port. (b) Cross section of the coupling region of the device. The outside waveguides are 500 nm × 220 nm rectangular Si waveguides, while the central waveguide has dimensions of 200 nm × 220 nm. The width of the copper cap on the HPW is 320 nm.

Fig. 2
Fig. 2

(a) Plot showing neff of individual Si waveguide and HPW against gap width g. The indices are matched at around g ≈70 nm. (b) Plot showing neff of the 3 TM-polarized supermodes against gap width g. Maximum power coupling between the outside waveguides occurs at the crossing where g = 75 nm.

Fig. 3
Fig. 3

Mode profiles (Ex for TE, Ey for TM) of all the propagating modes in our structure. Warm and cool colors represent positive and negative values respectively. The input and output waveguides each support 1 TE and 1 TM mode, while the central waveguide supports a total of 5 propagation modes. Of the 3 TM modes, mode A and C are symmetric, while mode B is antisymmetric.

Fig. 4
Fig. 4

(a) Plot showing power transferred to the output waveguide modes as a function of the propagation distance D. At D = 6.5 μm, almost all the TM light is coupled to the cross port, while the TE light remains in the bar port. (b) Plot showing ER of each port and IL of each polarization for a 6.5-μm long coupler as a function of wavelength, as computed in using EME (circles) and FDTD (dashed line).

Fig. 5
Fig. 5

(a) Plots showing ER of the bar port and IL for the cross port as a function of the gap g between the HPW and the Si waveguides, (b) mask misalignment Δx, and (c) variation in waveguide widths Δw. The ER of the cross port (calculated to be >40 dB) and IL of the bar port (<0.1 dB) are not shown.

Fig. 6
Fig. 6

FDTD simulations of the polarization splitter together with a sharp bend with radius (Rbend) = 3.0 μm bend at the bar port. These figures show the absolute value of Poynting vector as a function of position along the device.

Fig. 7
Fig. 7

Some key steps of the fabrication flow: (a) Si core patterning; (b) Si3N4/SiO2 deposition and CMP; (c) Si3N4/SiO2 deposition again; (d) SiO2 window opening; (e) gate oxide growth; and (f) Cu deposition and CMP. The thin Si3N4 layer is used for process control, not for functionality.

Fig. 8
Fig. 8

(a) SEM of the Si waveguide cores before oxide and copper deposition steps. (b) SEM of the window which was opened to expose the middle waveguide core. (c) Optical micrograph of a splitter showing a device with a sharp bend of 3 μm radius after the waveguide. (d) XTEM of the coupling region of the fabricated splitters. The Si waveguide and Cu cap structures are overlaid onto the image. (e) XTEM close up near the hybrid waveguide region. Due to over-etching of a thin Si3N4 stop layer, the copper cap has a 500 nm wide top-hat-like structure.

Fig. 9
Fig. 9

Transmission spectra of the fabricated polarization splitter. The results are normalized to a reference waveguide on the same chip.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2 n B n A n C =0 n B = n A + n C 2
L C = 2π ( β A β C ) = λ 0 2( n A n B )
E R Bar =10log( Power transfer from Input TE mode to Bar Port TE mode Power transfer from Input TM mode to Bar Port TM mode )
E R Cross =10log( Power transfer from Input TM mode to Cross Port TM mode Power transfer from Input TE mode to Cross Port TE Mode )
I L TE =10log( Power transfer from Input TE to Bar Port TE Mode )
I L TM =10log( Power transfer from Input TM to Cross Port TM Mode )

Metrics