Abstract

We present the nonlinear absorption investigation of an electroactive ligand and two ruthenium and iron metal complexes under 532 nm, 30 ps laser excitation, by the “open aperture” Z-scan technique. Significant nonlinear optical parameters have in all cases been measured, while the nonlinear attribute has been found to change from saturable to reverse saturable absorption between the initial ligand and its complexes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Fuks-Janczarek, J. Luc, B. Sahraoui, F. Dumur, P. Hudhomme, J. Berdowski, and I. V. Kityk, “Third-order nonlinear optical figure of merits for conjugated TTF-quinone molecules,” J. Phys. Chem. B109(20), 10179–10183 (2005).
    [CrossRef] [PubMed]
  2. N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
    [CrossRef] [PubMed]
  3. K. Iliopoulos, R. Czaplicki, H. El Ouazzani, J. Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett.97(10), 101104 (2010).
    [CrossRef]
  4. B. Sahraoui, X. N. Phu, M. Sallé, and A. Gorgues, “Electronic and nuclear contributions to the third-order nonlinear optical susceptibilities of new p-N, N’-dimethylaniline tetrathiafulvalene derivatives,” Opt. Lett.23(23), 1811–1813 (1998).
    [CrossRef] [PubMed]
  5. J. F. Lamère, I. Malfant, A. Sournia-Saquet, P. G. Lacroix, J. M. Fabre, L. Kaboub, T. Abbaz, A. Gouasmia, I. Asselberghs, and K. Clays, “Quadratic nonlinear optical response in partially charged donor-substituted tetrathiafulvalene: From a computational investigation to a rational synthetic feasibility,” Chem. Mater.19(4), 805–815 (2007).
    [CrossRef]
  6. B. Insuasty, C. Atienza, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, and B. Villacampa, “Electronic and structural effects on the nonlinear optical behavior in push-pull TTF/tricarbonyl chromiun arene complexes,” J. Org. Chem.69(21), 6986–6995 (2004).
    [CrossRef] [PubMed]
  7. M. Bendikov, F. Wudl, and D. F. Perepichka, “Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics,” Chem. Rev.104(11), 4891–4946 (2004).
    [CrossRef] [PubMed]
  8. M. González, J. L. Segura, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, B. Villacampa, V. Hernández, and J. T. López Navarrete, “Tetrathiafulvalene derivatives as NLO-phores: Synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-π-acceptor dyads,” J. Org. Chem.66(26), 8872–8882 (2001).
    [CrossRef] [PubMed]
  9. D. Lorcy, N. Bellec, M. Fourmigue, and N. Avarvari, “Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts,” Coord. Chem. Rev.253(9–10), 1398–1438 (2009) (and references therein).
    [CrossRef]
  10. Q. Wang, P. Day, J.-P. Griffiths, H. Nie, and J. D. Wallis, “Synthetic strategies for preparing BEDT-TTF derivatives functionalised with metal ion binding groups,” New J. Chem.30(12), 1790–1800 (2006).
    [CrossRef]
  11. B. J. Coe, T. J. Meyer, and P. S. White, “Control of axial ligand substitution in trans-bis(2,2'-bipyridine)ruthenium(II) complexes. Crystal and molecular structure of trans-(4-ethylpyridine)(dimethyl sulfoxide)bis(2,2'-bipyridine)ruthenium(II) hexafluorophosphate, trans-[Ru(bpy)2(4-Etpy)(DMSO)](PF6)2,” Inorg. Chem.32(19), 4012–4020 (1993).
    [CrossRef]
  12. H. Hofmeier and U. S. Schubert, “Recent developments in the supramolecular chemistry of terpyridine-metal complexes,” Chem. Soc. Rev.33(6), 373–399 (2004).
    [CrossRef] [PubMed]
  13. E. Ripaud, A. El-Ghayoury, E. Belhadj, M. Mazari, and M. Sallé, Manuscript in preparation.
  14. K. Heuzé, M. Fourmigué, and P. Batail, “The crystal chemistry of amide-functionalized ethylenedithiotetrathiafulvalenes: EDT-TTF-CONRR′ (R, R′ = H, Me),” J. Mater. Chem.9(10), 2373–2379 (1999).
    [CrossRef]
  15. T. Mutai, J.-D. Cheon, S. Arita, and K. Araki, “Phenyl-substituted 2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J.Chem.Soc., Perkin Trans.2(5), 862–865 (2002).
    [CrossRef]
  16. T. Mutai, J.-D. Cheon, G. Tsuchiya, and K. Araki, “6-Amino-2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J. Chem. Soc. Perkin Trans.2(5), 862–865 (2002).
  17. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
    [CrossRef]
  18. B. Gu, K. Lou, J. Chen, Y. Li, H.-T. Wang, and W. Ji, “Excited-state enhancement of third-order optical nonlinearities: photodynamics and characterization,” Opt. Express18(26), 26843–26853 (2010).
    [CrossRef] [PubMed]
  19. M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B105(44), 10797–10804 (2001).
    [CrossRef]
  20. T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2 ] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter18(23), 5279–5290 (2006).
    [CrossRef]
  21. W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett.435(1–3), 65–68 (2007).
    [CrossRef]
  22. K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B75(8), 871–874 (2002).
    [CrossRef]

2010 (2)

K. Iliopoulos, R. Czaplicki, H. El Ouazzani, J. Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett.97(10), 101104 (2010).
[CrossRef]

B. Gu, K. Lou, J. Chen, Y. Li, H.-T. Wang, and W. Ji, “Excited-state enhancement of third-order optical nonlinearities: photodynamics and characterization,” Opt. Express18(26), 26843–26853 (2010).
[CrossRef] [PubMed]

2009 (1)

D. Lorcy, N. Bellec, M. Fourmigue, and N. Avarvari, “Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts,” Coord. Chem. Rev.253(9–10), 1398–1438 (2009) (and references therein).
[CrossRef]

2007 (2)

J. F. Lamère, I. Malfant, A. Sournia-Saquet, P. G. Lacroix, J. M. Fabre, L. Kaboub, T. Abbaz, A. Gouasmia, I. Asselberghs, and K. Clays, “Quadratic nonlinear optical response in partially charged donor-substituted tetrathiafulvalene: From a computational investigation to a rational synthetic feasibility,” Chem. Mater.19(4), 805–815 (2007).
[CrossRef]

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett.435(1–3), 65–68 (2007).
[CrossRef]

2006 (2)

T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2 ] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter18(23), 5279–5290 (2006).
[CrossRef]

Q. Wang, P. Day, J.-P. Griffiths, H. Nie, and J. D. Wallis, “Synthetic strategies for preparing BEDT-TTF derivatives functionalised with metal ion binding groups,” New J. Chem.30(12), 1790–1800 (2006).
[CrossRef]

2005 (1)

I. Fuks-Janczarek, J. Luc, B. Sahraoui, F. Dumur, P. Hudhomme, J. Berdowski, and I. V. Kityk, “Third-order nonlinear optical figure of merits for conjugated TTF-quinone molecules,” J. Phys. Chem. B109(20), 10179–10183 (2005).
[CrossRef] [PubMed]

2004 (3)

B. Insuasty, C. Atienza, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, and B. Villacampa, “Electronic and structural effects on the nonlinear optical behavior in push-pull TTF/tricarbonyl chromiun arene complexes,” J. Org. Chem.69(21), 6986–6995 (2004).
[CrossRef] [PubMed]

M. Bendikov, F. Wudl, and D. F. Perepichka, “Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics,” Chem. Rev.104(11), 4891–4946 (2004).
[CrossRef] [PubMed]

H. Hofmeier and U. S. Schubert, “Recent developments in the supramolecular chemistry of terpyridine-metal complexes,” Chem. Soc. Rev.33(6), 373–399 (2004).
[CrossRef] [PubMed]

2002 (3)

T. Mutai, J.-D. Cheon, S. Arita, and K. Araki, “Phenyl-substituted 2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J.Chem.Soc., Perkin Trans.2(5), 862–865 (2002).
[CrossRef]

T. Mutai, J.-D. Cheon, G. Tsuchiya, and K. Araki, “6-Amino-2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J. Chem. Soc. Perkin Trans.2(5), 862–865 (2002).

K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B75(8), 871–874 (2002).
[CrossRef]

2001 (2)

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B105(44), 10797–10804 (2001).
[CrossRef]

M. González, J. L. Segura, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, B. Villacampa, V. Hernández, and J. T. López Navarrete, “Tetrathiafulvalene derivatives as NLO-phores: Synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-π-acceptor dyads,” J. Org. Chem.66(26), 8872–8882 (2001).
[CrossRef] [PubMed]

2000 (1)

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

1999 (1)

K. Heuzé, M. Fourmigué, and P. Batail, “The crystal chemistry of amide-functionalized ethylenedithiotetrathiafulvalenes: EDT-TTF-CONRR′ (R, R′ = H, Me),” J. Mater. Chem.9(10), 2373–2379 (1999).
[CrossRef]

1998 (1)

1993 (1)

B. J. Coe, T. J. Meyer, and P. S. White, “Control of axial ligand substitution in trans-bis(2,2'-bipyridine)ruthenium(II) complexes. Crystal and molecular structure of trans-(4-ethylpyridine)(dimethyl sulfoxide)bis(2,2'-bipyridine)ruthenium(II) hexafluorophosphate, trans-[Ru(bpy)2(4-Etpy)(DMSO)](PF6)2,” Inorg. Chem.32(19), 4012–4020 (1993).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Abbaz, T.

J. F. Lamère, I. Malfant, A. Sournia-Saquet, P. G. Lacroix, J. M. Fabre, L. Kaboub, T. Abbaz, A. Gouasmia, I. Asselberghs, and K. Clays, “Quadratic nonlinear optical response in partially charged donor-substituted tetrathiafulvalene: From a computational investigation to a rational synthetic feasibility,” Chem. Mater.19(4), 805–815 (2007).
[CrossRef]

Alcalá, R.

B. Insuasty, C. Atienza, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, and B. Villacampa, “Electronic and structural effects on the nonlinear optical behavior in push-pull TTF/tricarbonyl chromiun arene complexes,” J. Org. Chem.69(21), 6986–6995 (2004).
[CrossRef] [PubMed]

M. González, J. L. Segura, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, B. Villacampa, V. Hernández, and J. T. López Navarrete, “Tetrathiafulvalene derivatives as NLO-phores: Synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-π-acceptor dyads,” J. Org. Chem.66(26), 8872–8882 (2001).
[CrossRef] [PubMed]

Amouyal, E.

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B105(44), 10797–10804 (2001).
[CrossRef]

Andreu, R.

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

Araki, K.

T. Mutai, J.-D. Cheon, S. Arita, and K. Araki, “Phenyl-substituted 2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J.Chem.Soc., Perkin Trans.2(5), 862–865 (2002).
[CrossRef]

T. Mutai, J.-D. Cheon, G. Tsuchiya, and K. Araki, “6-Amino-2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J. Chem. Soc. Perkin Trans.2(5), 862–865 (2002).

Arca, M.

T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2 ] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter18(23), 5279–5290 (2006).
[CrossRef]

Arita, S.

T. Mutai, J.-D. Cheon, S. Arita, and K. Araki, “Phenyl-substituted 2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J.Chem.Soc., Perkin Trans.2(5), 862–865 (2002).
[CrossRef]

Asselberghs, I.

J. F. Lamère, I. Malfant, A. Sournia-Saquet, P. G. Lacroix, J. M. Fabre, L. Kaboub, T. Abbaz, A. Gouasmia, I. Asselberghs, and K. Clays, “Quadratic nonlinear optical response in partially charged donor-substituted tetrathiafulvalene: From a computational investigation to a rational synthetic feasibility,” Chem. Mater.19(4), 805–815 (2007).
[CrossRef]

Atienza, C.

B. Insuasty, C. Atienza, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, and B. Villacampa, “Electronic and structural effects on the nonlinear optical behavior in push-pull TTF/tricarbonyl chromiun arene complexes,” J. Org. Chem.69(21), 6986–6995 (2004).
[CrossRef] [PubMed]

Avarvari, N.

D. Lorcy, N. Bellec, M. Fourmigue, and N. Avarvari, “Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts,” Coord. Chem. Rev.253(9–10), 1398–1438 (2009) (and references therein).
[CrossRef]

Balandier, J. Y.

K. Iliopoulos, R. Czaplicki, H. El Ouazzani, J. Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett.97(10), 101104 (2010).
[CrossRef]

Batail, P.

K. Heuzé, M. Fourmigué, and P. Batail, “The crystal chemistry of amide-functionalized ethylenedithiotetrathiafulvalenes: EDT-TTF-CONRR′ (R, R′ = H, Me),” J. Mater. Chem.9(10), 2373–2379 (1999).
[CrossRef]

Belhadj, E.

E. Ripaud, A. El-Ghayoury, E. Belhadj, M. Mazari, and M. Sallé, Manuscript in preparation.

Bellec, N.

D. Lorcy, N. Bellec, M. Fourmigue, and N. Avarvari, “Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts,” Coord. Chem. Rev.253(9–10), 1398–1438 (2009) (and references therein).
[CrossRef]

Bendikov, M.

M. Bendikov, F. Wudl, and D. F. Perepichka, “Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics,” Chem. Rev.104(11), 4891–4946 (2004).
[CrossRef] [PubMed]

Berdowski, J.

I. Fuks-Janczarek, J. Luc, B. Sahraoui, F. Dumur, P. Hudhomme, J. Berdowski, and I. V. Kityk, “Third-order nonlinear optical figure of merits for conjugated TTF-quinone molecules,” J. Phys. Chem. B109(20), 10179–10183 (2005).
[CrossRef] [PubMed]

Cassano, T.

T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2 ] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter18(23), 5279–5290 (2006).
[CrossRef]

Chas, M.

K. Iliopoulos, R. Czaplicki, H. El Ouazzani, J. Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett.97(10), 101104 (2010).
[CrossRef]

Chen, J.

Cheon, J.-D.

T. Mutai, J.-D. Cheon, G. Tsuchiya, and K. Araki, “6-Amino-2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J. Chem. Soc. Perkin Trans.2(5), 862–865 (2002).

T. Mutai, J.-D. Cheon, S. Arita, and K. Araki, “Phenyl-substituted 2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J.Chem.Soc., Perkin Trans.2(5), 862–865 (2002).
[CrossRef]

Clays, K.

J. F. Lamère, I. Malfant, A. Sournia-Saquet, P. G. Lacroix, J. M. Fabre, L. Kaboub, T. Abbaz, A. Gouasmia, I. Asselberghs, and K. Clays, “Quadratic nonlinear optical response in partially charged donor-substituted tetrathiafulvalene: From a computational investigation to a rational synthetic feasibility,” Chem. Mater.19(4), 805–815 (2007).
[CrossRef]

Coe, B. J.

B. J. Coe, T. J. Meyer, and P. S. White, “Control of axial ligand substitution in trans-bis(2,2'-bipyridine)ruthenium(II) complexes. Crystal and molecular structure of trans-(4-ethylpyridine)(dimethyl sulfoxide)bis(2,2'-bipyridine)ruthenium(II) hexafluorophosphate, trans-[Ru(bpy)2(4-Etpy)(DMSO)](PF6)2,” Inorg. Chem.32(19), 4012–4020 (1993).
[CrossRef]

Couris, S.

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B105(44), 10797–10804 (2001).
[CrossRef]

Czaplicki, R.

K. Iliopoulos, R. Czaplicki, H. El Ouazzani, J. Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett.97(10), 101104 (2010).
[CrossRef]

Day, P.

Q. Wang, P. Day, J.-P. Griffiths, H. Nie, and J. D. Wallis, “Synthetic strategies for preparing BEDT-TTF derivatives functionalised with metal ion binding groups,” New J. Chem.30(12), 1790–1800 (2006).
[CrossRef]

Devillanova, F. A.

T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2 ] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter18(23), 5279–5290 (2006).
[CrossRef]

Dumur, F.

I. Fuks-Janczarek, J. Luc, B. Sahraoui, F. Dumur, P. Hudhomme, J. Berdowski, and I. V. Kityk, “Third-order nonlinear optical figure of merits for conjugated TTF-quinone molecules,” J. Phys. Chem. B109(20), 10179–10183 (2005).
[CrossRef] [PubMed]

El Ouazzani, H.

K. Iliopoulos, R. Czaplicki, H. El Ouazzani, J. Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett.97(10), 101104 (2010).
[CrossRef]

El-Ghayoury, A.

E. Ripaud, A. El-Ghayoury, E. Belhadj, M. Mazari, and M. Sallé, Manuscript in preparation.

Fabre, J. M.

J. F. Lamère, I. Malfant, A. Sournia-Saquet, P. G. Lacroix, J. M. Fabre, L. Kaboub, T. Abbaz, A. Gouasmia, I. Asselberghs, and K. Clays, “Quadratic nonlinear optical response in partially charged donor-substituted tetrathiafulvalene: From a computational investigation to a rational synthetic feasibility,” Chem. Mater.19(4), 805–815 (2007).
[CrossRef]

Favard, J. F.

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

Fourmigue, M.

D. Lorcy, N. Bellec, M. Fourmigue, and N. Avarvari, “Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts,” Coord. Chem. Rev.253(9–10), 1398–1438 (2009) (and references therein).
[CrossRef]

Fourmigué, M.

K. Heuzé, M. Fourmigué, and P. Batail, “The crystal chemistry of amide-functionalized ethylenedithiotetrathiafulvalenes: EDT-TTF-CONRR′ (R, R′ = H, Me),” J. Mater. Chem.9(10), 2373–2379 (1999).
[CrossRef]

Fuks-Janczarek, I.

I. Fuks-Janczarek, J. Luc, B. Sahraoui, F. Dumur, P. Hudhomme, J. Berdowski, and I. V. Kityk, “Third-order nonlinear optical figure of merits for conjugated TTF-quinone molecules,” J. Phys. Chem. B109(20), 10179–10183 (2005).
[CrossRef] [PubMed]

Garin, J.

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

Garín, J.

B. Insuasty, C. Atienza, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, and B. Villacampa, “Electronic and structural effects on the nonlinear optical behavior in push-pull TTF/tricarbonyl chromiun arene complexes,” J. Org. Chem.69(21), 6986–6995 (2004).
[CrossRef] [PubMed]

M. González, J. L. Segura, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, B. Villacampa, V. Hernández, and J. T. López Navarrete, “Tetrathiafulvalene derivatives as NLO-phores: Synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-π-acceptor dyads,” J. Org. Chem.66(26), 8872–8882 (2001).
[CrossRef] [PubMed]

Gindre, D.

K. Iliopoulos, R. Czaplicki, H. El Ouazzani, J. Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett.97(10), 101104 (2010).
[CrossRef]

Goeb, S.

K. Iliopoulos, R. Czaplicki, H. El Ouazzani, J. Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett.97(10), 101104 (2010).
[CrossRef]

González, M.

M. González, J. L. Segura, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, B. Villacampa, V. Hernández, and J. T. López Navarrete, “Tetrathiafulvalene derivatives as NLO-phores: Synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-π-acceptor dyads,” J. Org. Chem.66(26), 8872–8882 (2001).
[CrossRef] [PubMed]

Gorgues, A.

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

B. Sahraoui, X. N. Phu, M. Sallé, and A. Gorgues, “Electronic and nuclear contributions to the third-order nonlinear optical susceptibilities of new p-N, N’-dimethylaniline tetrathiafulvalene derivatives,” Opt. Lett.23(23), 1811–1813 (1998).
[CrossRef] [PubMed]

Gouasmia, A.

J. F. Lamère, I. Malfant, A. Sournia-Saquet, P. G. Lacroix, J. M. Fabre, L. Kaboub, T. Abbaz, A. Gouasmia, I. Asselberghs, and K. Clays, “Quadratic nonlinear optical response in partially charged donor-substituted tetrathiafulvalene: From a computational investigation to a rational synthetic feasibility,” Chem. Mater.19(4), 805–815 (2007).
[CrossRef]

Griffiths, J.-P.

Q. Wang, P. Day, J.-P. Griffiths, H. Nie, and J. D. Wallis, “Synthetic strategies for preparing BEDT-TTF derivatives functionalised with metal ion binding groups,” New J. Chem.30(12), 1790–1800 (2006).
[CrossRef]

Gu, B.

Guo, W. F.

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett.435(1–3), 65–68 (2007).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Hernández, V.

M. González, J. L. Segura, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, B. Villacampa, V. Hernández, and J. T. López Navarrete, “Tetrathiafulvalene derivatives as NLO-phores: Synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-π-acceptor dyads,” J. Org. Chem.66(26), 8872–8882 (2001).
[CrossRef] [PubMed]

Heuzé, K.

K. Heuzé, M. Fourmigué, and P. Batail, “The crystal chemistry of amide-functionalized ethylenedithiotetrathiafulvalenes: EDT-TTF-CONRR′ (R, R′ = H, Me),” J. Mater. Chem.9(10), 2373–2379 (1999).
[CrossRef]

Hofmeier, H.

H. Hofmeier and U. S. Schubert, “Recent developments in the supramolecular chemistry of terpyridine-metal complexes,” Chem. Soc. Rev.33(6), 373–399 (2004).
[CrossRef] [PubMed]

Hudhomme, P.

I. Fuks-Janczarek, J. Luc, B. Sahraoui, F. Dumur, P. Hudhomme, J. Berdowski, and I. V. Kityk, “Third-order nonlinear optical figure of merits for conjugated TTF-quinone molecules,” J. Phys. Chem. B109(20), 10179–10183 (2005).
[CrossRef] [PubMed]

Iliopoulos, K.

K. Iliopoulos, R. Czaplicki, H. El Ouazzani, J. Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett.97(10), 101104 (2010).
[CrossRef]

Insuasty, B.

B. Insuasty, C. Atienza, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, and B. Villacampa, “Electronic and structural effects on the nonlinear optical behavior in push-pull TTF/tricarbonyl chromiun arene complexes,” J. Org. Chem.69(21), 6986–6995 (2004).
[CrossRef] [PubMed]

Ji, W.

Kaboub, L.

J. F. Lamère, I. Malfant, A. Sournia-Saquet, P. G. Lacroix, J. M. Fabre, L. Kaboub, T. Abbaz, A. Gouasmia, I. Asselberghs, and K. Clays, “Quadratic nonlinear optical response in partially charged donor-substituted tetrathiafulvalene: From a computational investigation to a rational synthetic feasibility,” Chem. Mater.19(4), 805–815 (2007).
[CrossRef]

Kityk, I. V.

I. Fuks-Janczarek, J. Luc, B. Sahraoui, F. Dumur, P. Hudhomme, J. Berdowski, and I. V. Kityk, “Third-order nonlinear optical figure of merits for conjugated TTF-quinone molecules,” J. Phys. Chem. B109(20), 10179–10183 (2005).
[CrossRef] [PubMed]

Konstantaki, M.

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B105(44), 10797–10804 (2001).
[CrossRef]

Koudoumas, E.

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B105(44), 10797–10804 (2001).
[CrossRef]

Lacroix, P. G.

J. F. Lamère, I. Malfant, A. Sournia-Saquet, P. G. Lacroix, J. M. Fabre, L. Kaboub, T. Abbaz, A. Gouasmia, I. Asselberghs, and K. Clays, “Quadratic nonlinear optical response in partially charged donor-substituted tetrathiafulvalene: From a computational investigation to a rational synthetic feasibility,” Chem. Mater.19(4), 805–815 (2007).
[CrossRef]

Laine, P.

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B105(44), 10797–10804 (2001).
[CrossRef]

Lamère, J. F.

J. F. Lamère, I. Malfant, A. Sournia-Saquet, P. G. Lacroix, J. M. Fabre, L. Kaboub, T. Abbaz, A. Gouasmia, I. Asselberghs, and K. Clays, “Quadratic nonlinear optical response in partially charged donor-substituted tetrathiafulvalene: From a computational investigation to a rational synthetic feasibility,” Chem. Mater.19(4), 805–815 (2007).
[CrossRef]

Leach, S.

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B105(44), 10797–10804 (2001).
[CrossRef]

Levillain, E.

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

Li, Y.

López Navarrete, J. T.

M. González, J. L. Segura, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, B. Villacampa, V. Hernández, and J. T. López Navarrete, “Tetrathiafulvalene derivatives as NLO-phores: Synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-π-acceptor dyads,” J. Org. Chem.66(26), 8872–8882 (2001).
[CrossRef] [PubMed]

Lorcy, D.

D. Lorcy, N. Bellec, M. Fourmigue, and N. Avarvari, “Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts,” Coord. Chem. Rev.253(9–10), 1398–1438 (2009) (and references therein).
[CrossRef]

Lou, K.

Luc, J.

I. Fuks-Janczarek, J. Luc, B. Sahraoui, F. Dumur, P. Hudhomme, J. Berdowski, and I. V. Kityk, “Third-order nonlinear optical figure of merits for conjugated TTF-quinone molecules,” J. Phys. Chem. B109(20), 10179–10183 (2005).
[CrossRef] [PubMed]

Malfant, I.

J. F. Lamère, I. Malfant, A. Sournia-Saquet, P. G. Lacroix, J. M. Fabre, L. Kaboub, T. Abbaz, A. Gouasmia, I. Asselberghs, and K. Clays, “Quadratic nonlinear optical response in partially charged donor-substituted tetrathiafulvalene: From a computational investigation to a rational synthetic feasibility,” Chem. Mater.19(4), 805–815 (2007).
[CrossRef]

Martín, N.

B. Insuasty, C. Atienza, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, and B. Villacampa, “Electronic and structural effects on the nonlinear optical behavior in push-pull TTF/tricarbonyl chromiun arene complexes,” J. Org. Chem.69(21), 6986–6995 (2004).
[CrossRef] [PubMed]

M. González, J. L. Segura, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, B. Villacampa, V. Hernández, and J. T. López Navarrete, “Tetrathiafulvalene derivatives as NLO-phores: Synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-π-acceptor dyads,” J. Org. Chem.66(26), 8872–8882 (2001).
[CrossRef] [PubMed]

Mazari, M.

E. Ripaud, A. El-Ghayoury, E. Belhadj, M. Mazari, and M. Sallé, Manuscript in preparation.

Meyer, T. J.

B. J. Coe, T. J. Meyer, and P. S. White, “Control of axial ligand substitution in trans-bis(2,2'-bipyridine)ruthenium(II) complexes. Crystal and molecular structure of trans-(4-ethylpyridine)(dimethyl sulfoxide)bis(2,2'-bipyridine)ruthenium(II) hexafluorophosphate, trans-[Ru(bpy)2(4-Etpy)(DMSO)](PF6)2,” Inorg. Chem.32(19), 4012–4020 (1993).
[CrossRef]

Mutai, T.

T. Mutai, J.-D. Cheon, S. Arita, and K. Araki, “Phenyl-substituted 2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J.Chem.Soc., Perkin Trans.2(5), 862–865 (2002).
[CrossRef]

T. Mutai, J.-D. Cheon, G. Tsuchiya, and K. Araki, “6-Amino-2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J. Chem. Soc. Perkin Trans.2(5), 862–865 (2002).

Nampoori, V. P. N.

K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B75(8), 871–874 (2002).
[CrossRef]

Nie, H.

Q. Wang, P. Day, J.-P. Griffiths, H. Nie, and J. D. Wallis, “Synthetic strategies for preparing BEDT-TTF derivatives functionalised with metal ion binding groups,” New J. Chem.30(12), 1790–1800 (2006).
[CrossRef]

Orduna, J.

B. Insuasty, C. Atienza, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, and B. Villacampa, “Electronic and structural effects on the nonlinear optical behavior in push-pull TTF/tricarbonyl chromiun arene complexes,” J. Org. Chem.69(21), 6986–6995 (2004).
[CrossRef] [PubMed]

M. González, J. L. Segura, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, B. Villacampa, V. Hernández, and J. T. López Navarrete, “Tetrathiafulvalene derivatives as NLO-phores: Synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-π-acceptor dyads,” J. Org. Chem.66(26), 8872–8882 (2001).
[CrossRef] [PubMed]

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

Orti, E.

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

Perepichka, D. F.

M. Bendikov, F. Wudl, and D. F. Perepichka, “Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics,” Chem. Rev.104(11), 4891–4946 (2004).
[CrossRef] [PubMed]

Phu, X. N.

Pou-Amerigo, R.

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

Ren, Q.

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett.435(1–3), 65–68 (2007).
[CrossRef]

Riou, A.

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

Ripaud, E.

E. Ripaud, A. El-Ghayoury, E. Belhadj, M. Mazari, and M. Sallé, Manuscript in preparation.

Sahraoui, B.

K. Iliopoulos, R. Czaplicki, H. El Ouazzani, J. Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett.97(10), 101104 (2010).
[CrossRef]

I. Fuks-Janczarek, J. Luc, B. Sahraoui, F. Dumur, P. Hudhomme, J. Berdowski, and I. V. Kityk, “Third-order nonlinear optical figure of merits for conjugated TTF-quinone molecules,” J. Phys. Chem. B109(20), 10179–10183 (2005).
[CrossRef] [PubMed]

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

B. Sahraoui, X. N. Phu, M. Sallé, and A. Gorgues, “Electronic and nuclear contributions to the third-order nonlinear optical susceptibilities of new p-N, N’-dimethylaniline tetrathiafulvalene derivatives,” Opt. Lett.23(23), 1811–1813 (1998).
[CrossRef] [PubMed]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Salle, M.

K. Iliopoulos, R. Czaplicki, H. El Ouazzani, J. Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett.97(10), 101104 (2010).
[CrossRef]

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

Sallé, M.

Schubert, U. S.

H. Hofmeier and U. S. Schubert, “Recent developments in the supramolecular chemistry of terpyridine-metal complexes,” Chem. Soc. Rev.33(6), 373–399 (2004).
[CrossRef] [PubMed]

Segura, J. L.

M. González, J. L. Segura, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, B. Villacampa, V. Hernández, and J. T. López Navarrete, “Tetrathiafulvalene derivatives as NLO-phores: Synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-π-acceptor dyads,” J. Org. Chem.66(26), 8872–8882 (2001).
[CrossRef] [PubMed]

Seoane, C.

B. Insuasty, C. Atienza, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, and B. Villacampa, “Electronic and structural effects on the nonlinear optical behavior in push-pull TTF/tricarbonyl chromiun arene complexes,” J. Org. Chem.69(21), 6986–6995 (2004).
[CrossRef] [PubMed]

M. González, J. L. Segura, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, B. Villacampa, V. Hernández, and J. T. López Navarrete, “Tetrathiafulvalene derivatives as NLO-phores: Synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-π-acceptor dyads,” J. Org. Chem.66(26), 8872–8882 (2001).
[CrossRef] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Sournia-Saquet, A.

J. F. Lamère, I. Malfant, A. Sournia-Saquet, P. G. Lacroix, J. M. Fabre, L. Kaboub, T. Abbaz, A. Gouasmia, I. Asselberghs, and K. Clays, “Quadratic nonlinear optical response in partially charged donor-substituted tetrathiafulvalene: From a computational investigation to a rational synthetic feasibility,” Chem. Mater.19(4), 805–815 (2007).
[CrossRef]

Sun, J.

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett.435(1–3), 65–68 (2007).
[CrossRef]

Sun, X. B.

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett.435(1–3), 65–68 (2007).
[CrossRef]

Terkia-Derdra, N.

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

Thomas, J.

K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B75(8), 871–874 (2002).
[CrossRef]

Tommasi, R.

T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2 ] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter18(23), 5279–5290 (2006).
[CrossRef]

Tsuchiya, G.

T. Mutai, J.-D. Cheon, G. Tsuchiya, and K. Araki, “6-Amino-2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J. Chem. Soc. Perkin Trans.2(5), 862–865 (2002).

Unnikrishnan, K. P.

K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B75(8), 871–874 (2002).
[CrossRef]

Vallabhan, C. P. G.

K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B75(8), 871–874 (2002).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Villacampa, B.

B. Insuasty, C. Atienza, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, and B. Villacampa, “Electronic and structural effects on the nonlinear optical behavior in push-pull TTF/tricarbonyl chromiun arene complexes,” J. Org. Chem.69(21), 6986–6995 (2004).
[CrossRef] [PubMed]

M. González, J. L. Segura, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, B. Villacampa, V. Hernández, and J. T. López Navarrete, “Tetrathiafulvalene derivatives as NLO-phores: Synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-π-acceptor dyads,” J. Org. Chem.66(26), 8872–8882 (2001).
[CrossRef] [PubMed]

Viruela, R.

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

Wallis, J. D.

Q. Wang, P. Day, J.-P. Griffiths, H. Nie, and J. D. Wallis, “Synthetic strategies for preparing BEDT-TTF derivatives functionalised with metal ion binding groups,” New J. Chem.30(12), 1790–1800 (2006).
[CrossRef]

Wang, H.-T.

Wang, Q.

Q. Wang, P. Day, J.-P. Griffiths, H. Nie, and J. D. Wallis, “Synthetic strategies for preparing BEDT-TTF derivatives functionalised with metal ion binding groups,” New J. Chem.30(12), 1790–1800 (2006).
[CrossRef]

Wang, X. Q.

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett.435(1–3), 65–68 (2007).
[CrossRef]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

White, P. S.

B. J. Coe, T. J. Meyer, and P. S. White, “Control of axial ligand substitution in trans-bis(2,2'-bipyridine)ruthenium(II) complexes. Crystal and molecular structure of trans-(4-ethylpyridine)(dimethyl sulfoxide)bis(2,2'-bipyridine)ruthenium(II) hexafluorophosphate, trans-[Ru(bpy)2(4-Etpy)(DMSO)](PF6)2,” Inorg. Chem.32(19), 4012–4020 (1993).
[CrossRef]

Wudl, F.

M. Bendikov, F. Wudl, and D. F. Perepichka, “Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics,” Chem. Rev.104(11), 4891–4946 (2004).
[CrossRef] [PubMed]

Xu, D.

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett.435(1–3), 65–68 (2007).
[CrossRef]

Zhang, G. H.

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett.435(1–3), 65–68 (2007).
[CrossRef]

Appl. Phys. B (1)

K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B75(8), 871–874 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

K. Iliopoulos, R. Czaplicki, H. El Ouazzani, J. Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett.97(10), 101104 (2010).
[CrossRef]

Chem. Mater. (1)

J. F. Lamère, I. Malfant, A. Sournia-Saquet, P. G. Lacroix, J. M. Fabre, L. Kaboub, T. Abbaz, A. Gouasmia, I. Asselberghs, and K. Clays, “Quadratic nonlinear optical response in partially charged donor-substituted tetrathiafulvalene: From a computational investigation to a rational synthetic feasibility,” Chem. Mater.19(4), 805–815 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett.435(1–3), 65–68 (2007).
[CrossRef]

Chem. Rev. (1)

M. Bendikov, F. Wudl, and D. F. Perepichka, “Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics,” Chem. Rev.104(11), 4891–4946 (2004).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

H. Hofmeier and U. S. Schubert, “Recent developments in the supramolecular chemistry of terpyridine-metal complexes,” Chem. Soc. Rev.33(6), 373–399 (2004).
[CrossRef] [PubMed]

Chemistry (1)

N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000).
[CrossRef] [PubMed]

Coord. Chem. Rev. (1)

D. Lorcy, N. Bellec, M. Fourmigue, and N. Avarvari, “Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts,” Coord. Chem. Rev.253(9–10), 1398–1438 (2009) (and references therein).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Inorg. Chem. (1)

B. J. Coe, T. J. Meyer, and P. S. White, “Control of axial ligand substitution in trans-bis(2,2'-bipyridine)ruthenium(II) complexes. Crystal and molecular structure of trans-(4-ethylpyridine)(dimethyl sulfoxide)bis(2,2'-bipyridine)ruthenium(II) hexafluorophosphate, trans-[Ru(bpy)2(4-Etpy)(DMSO)](PF6)2,” Inorg. Chem.32(19), 4012–4020 (1993).
[CrossRef]

J. Chem. Soc. Perkin Trans. (1)

T. Mutai, J.-D. Cheon, G. Tsuchiya, and K. Araki, “6-Amino-2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J. Chem. Soc. Perkin Trans.2(5), 862–865 (2002).

J. Mater. Chem. (1)

K. Heuzé, M. Fourmigué, and P. Batail, “The crystal chemistry of amide-functionalized ethylenedithiotetrathiafulvalenes: EDT-TTF-CONRR′ (R, R′ = H, Me),” J. Mater. Chem.9(10), 2373–2379 (1999).
[CrossRef]

J. Org. Chem. (2)

M. González, J. L. Segura, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, B. Villacampa, V. Hernández, and J. T. López Navarrete, “Tetrathiafulvalene derivatives as NLO-phores: Synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-π-acceptor dyads,” J. Org. Chem.66(26), 8872–8882 (2001).
[CrossRef] [PubMed]

B. Insuasty, C. Atienza, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, and B. Villacampa, “Electronic and structural effects on the nonlinear optical behavior in push-pull TTF/tricarbonyl chromiun arene complexes,” J. Org. Chem.69(21), 6986–6995 (2004).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

I. Fuks-Janczarek, J. Luc, B. Sahraoui, F. Dumur, P. Hudhomme, J. Berdowski, and I. V. Kityk, “Third-order nonlinear optical figure of merits for conjugated TTF-quinone molecules,” J. Phys. Chem. B109(20), 10179–10183 (2005).
[CrossRef] [PubMed]

M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B105(44), 10797–10804 (2001).
[CrossRef]

J. Phys. Condens. Matter (1)

T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2 ] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter18(23), 5279–5290 (2006).
[CrossRef]

J.Chem.Soc., Perkin Trans. (1)

T. Mutai, J.-D. Cheon, S. Arita, and K. Araki, “Phenyl-substituted 2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J.Chem.Soc., Perkin Trans.2(5), 862–865 (2002).
[CrossRef]

New J. Chem. (1)

Q. Wang, P. Day, J.-P. Griffiths, H. Nie, and J. D. Wallis, “Synthetic strategies for preparing BEDT-TTF derivatives functionalised with metal ion binding groups,” New J. Chem.30(12), 1790–1800 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (1)

E. Ripaud, A. El-Ghayoury, E. Belhadj, M. Mazari, and M. Sallé, Manuscript in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Chemical structures of the investigated compounds.

Fig. 2
Fig. 2

UV-Visible absorption spectra of the ligand S1 (red/dash-dot line), the complex S2 (black/solid line) and the complex S3 (blue/dot line), corresponding to 3 × 10−5 M in choloform, 4 × 10−5 M in DMF, 4 × 10−5 M in acetonitrile, respectively.

Fig. 3
Fig. 3

“Open-aperture” Z-scans obtained for the S1 system for different sample concentrations.

Fig. 4
Fig. 4

“Open-aperture” Z-scans obtained for the (a) S2 and (b) S3 systems.

Tables (1)

Tables Icon

Table 1 Nonlinear optical parameters determined from the Z-scan measurements (30 ps, 532 nm).

Metrics