Abstract

We propose and experimentally demonstrate a scheme to reduce the energy consumption of optical line terminal (OLT) in wavelength division multiplexing - orthogonal frequency division multiplexing - passive optical networks (WDM-OFDM-PONs). In our scheme, a wireless communication technique, termed layered modulation, is introduced to maximize the transmission capacity of OFDM modulation module in the OLT by multiplexing data from different ONU groups with signal-to-noise ratio (SNR) margins onto the same subcarriers. With adaptive and dynamic subcarrier and layer allocation, several ONU groups with low traffic demands can share one OFDM modulation module to deliver their data during non-peak hours of a day, thus greatly reducing the number of running devices and minimizing the energy consumption of the OLT. Numerical calculation shows that an energy efficiency improvement of 28.3% in the OLT can be achieved by using proposed scheme compared to the conventional WDM-OFDM-PON.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Tucker, “Green optical communications – Part I: Energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron.17(2), 245–260 (2011).
    [CrossRef]
  2. R. S. Tucker, “Green optical communications – Part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron.17(2), 261–274 (2011).
    [CrossRef]
  3. S. J. Yoo, “Energy efficiency in the future internet: the role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron.17(2), 406–418 (2011).
    [CrossRef]
  4. C. Lange and A. Gladisch, “On the energy consumption of FTTH access networks,” in Proc. OFC2009, San Diego, CA, paper JThA79.
  5. P. Chowdhury, M. Tornatore, S. Sarkar, and B. Mukherjee, “Building a green wireless-optical broad band access netwok (WOBAN),” J. Lightwave Technol.28(16), 2219–2229 (2010).
    [CrossRef]
  6. L. Shi, S. S. Lee, and B. Mukherjee, “An SLA-based energy-efficient scheduling scheme for EPON with sleep-mode ONU,” in Proc. OFC2011, paper OThB4.
  7. R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, and H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw.2(9), 716–729 (2010).
    [CrossRef]
  8. K. H. Tse, W. Jia, and C. K. Chan, “A cost-effective pilot-tone-based monitoring technique for power saving in RSOA-based WDM-PON,” in Proc. OFC2011, paper OThB6.
  9. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol.30(4), 384–398 (2012).
    [CrossRef]
  10. B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express18(3), 2137–2143 (2010).
    [CrossRef] [PubMed]
  11. M. F. Huang, J. Yu, D. Qian, N. Cvijetic, and G. K. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Proc. OFC2009, San Diego, CA, paper OMV5.
  12. D. Qian, T. Kwok, N. Cviject, J. Hu, and T. Wang, “41.25 Gb/s real-time OFDM receiver for variable rate WDM-OFDMA-PON transmission,” in Proc. OFC2010, paper PDPD9.
  13. X. Hu, L. Zhang, P. Cao, K. Wang, and Y. Su, “Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in optical line terminal,” Opt. Express20(7), 8071–8077 (2012).
    [CrossRef] [PubMed]
  14. Q. Yang, W. Shieh, and Y. Ma, “Bit and power loading for coherent optical OFDM,” IEEE Photon. Technol. Lett.20(15), 1305–1307 (2008).
    [CrossRef]
  15. H. Jiang and P. Wilford, “A hierarchical modulation for upgrading digital broadcast systems,” IEEE Trans. Broadcast51(2), 223–229 (2005).
    [CrossRef]
  16. M. Hossain, P. Vitthaladevuni, M. S. Alouini, V. Bhargava, and A. Goldsmith, “Adaptive hierarchical modulation for simultaneous voice and multiclass data transmission over fading channels,” IEEE Trans. Vehicular Technol.55(4), 1181–1194 (2006).
    [CrossRef]
  17. B. Schmidt, A. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection,” J. Lightwave Technol.26(1), 196–203 (2008).
    [CrossRef]
  18. Sandvine, “Global Internet Phenomena Spotlight – North America, Fixed Access, Spring 2011” (Sandvine, 2011). http://www.sandvine.com/news/global_broadband_trends.asp .
  19. B. Skubic, E. Betou, T. Ayhan, and S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag.50(1), 122–127 (2012).
    [CrossRef]
  20. B. Sedighi, K. Lee, R. Tucker, H. Chow, and P. Vetter, “Energy-efficiency in future 40-Gb/s fiber access networks,” in Proc. OFC2012, paper JTh2A.59.

2012 (3)

2011 (3)

R. S. Tucker, “Green optical communications – Part I: Energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron.17(2), 245–260 (2011).
[CrossRef]

R. S. Tucker, “Green optical communications – Part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron.17(2), 261–274 (2011).
[CrossRef]

S. J. Yoo, “Energy efficiency in the future internet: the role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron.17(2), 406–418 (2011).
[CrossRef]

2010 (3)

2008 (2)

2006 (1)

M. Hossain, P. Vitthaladevuni, M. S. Alouini, V. Bhargava, and A. Goldsmith, “Adaptive hierarchical modulation for simultaneous voice and multiclass data transmission over fading channels,” IEEE Trans. Vehicular Technol.55(4), 1181–1194 (2006).
[CrossRef]

2005 (1)

H. Jiang and P. Wilford, “A hierarchical modulation for upgrading digital broadcast systems,” IEEE Trans. Broadcast51(2), 223–229 (2005).
[CrossRef]

Alouini, M. S.

M. Hossain, P. Vitthaladevuni, M. S. Alouini, V. Bhargava, and A. Goldsmith, “Adaptive hierarchical modulation for simultaneous voice and multiclass data transmission over fading channels,” IEEE Trans. Vehicular Technol.55(4), 1181–1194 (2006).
[CrossRef]

Armstrong, J.

Ayhan, T.

B. Skubic, E. Betou, T. Ayhan, and S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag.50(1), 122–127 (2012).
[CrossRef]

Betou, E.

B. Skubic, E. Betou, T. Ayhan, and S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag.50(1), 122–127 (2012).
[CrossRef]

Bhargava, V.

M. Hossain, P. Vitthaladevuni, M. S. Alouini, V. Bhargava, and A. Goldsmith, “Adaptive hierarchical modulation for simultaneous voice and multiclass data transmission over fading channels,” IEEE Trans. Vehicular Technol.55(4), 1181–1194 (2006).
[CrossRef]

Cao, P.

Chowdhury, P.

Cvijetic, N.

Dahlfort, S.

B. Skubic, E. Betou, T. Ayhan, and S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag.50(1), 122–127 (2012).
[CrossRef]

Fujimoto, Y.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, and H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw.2(9), 716–729 (2010).
[CrossRef]

Goldsmith, A.

M. Hossain, P. Vitthaladevuni, M. S. Alouini, V. Bhargava, and A. Goldsmith, “Adaptive hierarchical modulation for simultaneous voice and multiclass data transmission over fading channels,” IEEE Trans. Vehicular Technol.55(4), 1181–1194 (2006).
[CrossRef]

Hadama, H.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, and H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw.2(9), 716–729 (2010).
[CrossRef]

Hossain, M.

M. Hossain, P. Vitthaladevuni, M. S. Alouini, V. Bhargava, and A. Goldsmith, “Adaptive hierarchical modulation for simultaneous voice and multiclass data transmission over fading channels,” IEEE Trans. Vehicular Technol.55(4), 1181–1194 (2006).
[CrossRef]

Hu, X.

Jiang, H.

H. Jiang and P. Wilford, “A hierarchical modulation for upgrading digital broadcast systems,” IEEE Trans. Broadcast51(2), 223–229 (2005).
[CrossRef]

Kani, J.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, and H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw.2(9), 716–729 (2010).
[CrossRef]

Kubo, R.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, and H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw.2(9), 716–729 (2010).
[CrossRef]

Liu, B.

Lowery, A.

Ma, Y.

Q. Yang, W. Shieh, and Y. Ma, “Bit and power loading for coherent optical OFDM,” IEEE Photon. Technol. Lett.20(15), 1305–1307 (2008).
[CrossRef]

Mukherjee, B.

Sakamoto, T.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, and H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw.2(9), 716–729 (2010).
[CrossRef]

Sarkar, S.

Schmidt, B.

Shieh, W.

Q. Yang, W. Shieh, and Y. Ma, “Bit and power loading for coherent optical OFDM,” IEEE Photon. Technol. Lett.20(15), 1305–1307 (2008).
[CrossRef]

Skubic, B.

B. Skubic, E. Betou, T. Ayhan, and S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag.50(1), 122–127 (2012).
[CrossRef]

Su, Y.

Tornatore, M.

Tucker, R. S.

R. S. Tucker, “Green optical communications – Part I: Energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron.17(2), 245–260 (2011).
[CrossRef]

R. S. Tucker, “Green optical communications – Part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron.17(2), 261–274 (2011).
[CrossRef]

Ujikawa, H.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, and H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw.2(9), 716–729 (2010).
[CrossRef]

Vitthaladevuni, P.

M. Hossain, P. Vitthaladevuni, M. S. Alouini, V. Bhargava, and A. Goldsmith, “Adaptive hierarchical modulation for simultaneous voice and multiclass data transmission over fading channels,” IEEE Trans. Vehicular Technol.55(4), 1181–1194 (2006).
[CrossRef]

Wang, K.

Wilford, P.

H. Jiang and P. Wilford, “A hierarchical modulation for upgrading digital broadcast systems,” IEEE Trans. Broadcast51(2), 223–229 (2005).
[CrossRef]

Xin, X.

Yang, Q.

Q. Yang, W. Shieh, and Y. Ma, “Bit and power loading for coherent optical OFDM,” IEEE Photon. Technol. Lett.20(15), 1305–1307 (2008).
[CrossRef]

Yoo, S. J.

S. J. Yoo, “Energy efficiency in the future internet: the role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron.17(2), 406–418 (2011).
[CrossRef]

Yoshimoto, N.

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, and H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw.2(9), 716–729 (2010).
[CrossRef]

Yu, C.

Yu, J.

Zhang, L.

Zhang, Q.

IEEE Commun. Mag. (1)

B. Skubic, E. Betou, T. Ayhan, and S. Dahlfort, “Energy-efficient next-generation optical access networks,” IEEE Commun. Mag.50(1), 122–127 (2012).
[CrossRef]

IEEE J. Opt. Commun. Netw. (1)

R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, and H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” IEEE J. Opt. Commun. Netw.2(9), 716–729 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

R. S. Tucker, “Green optical communications – Part I: Energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron.17(2), 245–260 (2011).
[CrossRef]

R. S. Tucker, “Green optical communications – Part II: Energy limitations in networks,” IEEE J. Sel. Top. Quantum Electron.17(2), 261–274 (2011).
[CrossRef]

S. J. Yoo, “Energy efficiency in the future internet: the role of optical packet switching and optical-label switching,” IEEE J. Sel. Top. Quantum Electron.17(2), 406–418 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Q. Yang, W. Shieh, and Y. Ma, “Bit and power loading for coherent optical OFDM,” IEEE Photon. Technol. Lett.20(15), 1305–1307 (2008).
[CrossRef]

IEEE Trans. Broadcast (1)

H. Jiang and P. Wilford, “A hierarchical modulation for upgrading digital broadcast systems,” IEEE Trans. Broadcast51(2), 223–229 (2005).
[CrossRef]

IEEE Trans. Vehicular Technol. (1)

M. Hossain, P. Vitthaladevuni, M. S. Alouini, V. Bhargava, and A. Goldsmith, “Adaptive hierarchical modulation for simultaneous voice and multiclass data transmission over fading channels,” IEEE Trans. Vehicular Technol.55(4), 1181–1194 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (2)

Other (7)

B. Sedighi, K. Lee, R. Tucker, H. Chow, and P. Vetter, “Energy-efficiency in future 40-Gb/s fiber access networks,” in Proc. OFC2012, paper JTh2A.59.

M. F. Huang, J. Yu, D. Qian, N. Cvijetic, and G. K. Chang, “Lightwave centralized WDM-OFDM-PON network employing cost-effective directly modulated laser,” in Proc. OFC2009, San Diego, CA, paper OMV5.

D. Qian, T. Kwok, N. Cviject, J. Hu, and T. Wang, “41.25 Gb/s real-time OFDM receiver for variable rate WDM-OFDMA-PON transmission,” in Proc. OFC2010, paper PDPD9.

Sandvine, “Global Internet Phenomena Spotlight – North America, Fixed Access, Spring 2011” (Sandvine, 2011). http://www.sandvine.com/news/global_broadband_trends.asp .

L. Shi, S. S. Lee, and B. Mukherjee, “An SLA-based energy-efficient scheduling scheme for EPON with sleep-mode ONU,” in Proc. OFC2011, paper OThB4.

K. H. Tse, W. Jia, and C. K. Chan, “A cost-effective pilot-tone-based monitoring technique for power saving in RSOA-based WDM-PON,” in Proc. OFC2011, paper OThB6.

C. Lange and A. Gladisch, “On the energy consumption of FTTH access networks,” in Proc. OFC2009, San Diego, CA, paper JThA79.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) QPSK/16QAM layered modulation. (b) Two-dimensional subcarrier and layer allocation (LS: low-SNR; HS: high-SNR). (c) Schematic diagram of the proposed energy-efficient WDM-OFDM-PON (LR: long-reach; HSR: high-split-ratio).

Fig. 2
Fig. 2

Experimental setup for energy-efficient WDM-OFDM-PON based on 2-D subcarrier and layer allocation.

Fig. 3
Fig. 3

BER curves for hierarchical QPSK/16QAM signals with α = 2 and 3 after (a) 12.5-km transmission, (b) 75-km transmission (FEC threshold: 2 × 10−3).

Fig. 4
Fig. 4

(a) Calculated mathematical expectations of the number of running OFDM modulation modules with different degrees of flexibility. (b) Offered load over the course of an average day in North America [18]. (c) Required OFDM modulation modules for energy-efficient (F = 4) and conventional WDM-OFDM-PONs versus time in an average day.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SN R ONUh SN R 2 SN R 16QAM SN R ONUi,j SN R 1 SN R QPSK

Metrics