Abstract

We demonstrate a novel method of generating milli-watt level mid-IR (MIR) pulses based on difference frequency mixing of the output from a 40 MHz Yb fiber Chirped Pulse Amplifier (CPA) and the intense Stokes pulses generated in a photonic crystal fiber (PCF) with two closely spaced zero dispersion wavelengths (ZDW). By taking advantage of the unique dispersion profile of the fiber, high power narrowband Stokes pulses are selectively generated in the normal dispersion region of the PCF with up to 1.45 nJ of pulse energy. Mixing with 12 nJ of pump pulses at 1035 nm in a type-II AgGaS2 crystal yields MIR pulses around 5.5 µm wavelength with up to 3 mW of average power and 75 pJ of pulse energy. The reported method can be extended to generation of other MIR wavelengths by selecting PCFs with different second ZDWs or engineering the fiber dispersion profile via longitudinal tapering.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy solid-state mid-infrared laser sources,” in Solid-State Mid-Infrared Laser Sources I. Sorokina, and K. Vodopyanov, eds. (Springer 2003).
  2. A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
    [CrossRef]
  3. R. A. Kaindl, D. C. Smith, M. Joschko, M. P. Hasselbeck, M. Woerner, and T. Elsaesser, “Femtosecond infrared pulses tunable from 9 to 18 μm at an 88-MHz repetition rate,” Opt. Lett.23(11), 861–863 (1998).
    [CrossRef] [PubMed]
  4. M. R. X. de Barros, R. S. Miranda, T. M. Jedju, and P. C. Becker, “High-repetition-rate femtosecond mid-infrared pulse generation,” Opt. Lett.20(5), 480–482 (1995).
    [CrossRef] [PubMed]
  5. S. M. Foreman, D. J. Jones, and J. Ye, “Flexible and rapidly configurable femtosecond pulse generation in the mid-IR,” Opt. Lett.28(5), 370–372 (2003).
    [CrossRef] [PubMed]
  6. S. Ehret and H. Schneider, “Generation of subpicosecond infrared pulses tunable between 5.2 μm and 18 μm at a repetition rate of 76 MHz,” Appl. Phys. B66(1), 27–30 (1998).
    [CrossRef]
  7. R. Hegenbarth, A. Steinmann, S. Sarkisov, and H. Giessen, “Milliwatt-level mid-infrared (10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator,” Opt. Lett.37(17), 3513–3515 (2012).
    [CrossRef] [PubMed]
  8. R. Romero-Alvarez, R. Pettus, Z. Wu, and D. Strickland, “Two-color fiber amplifier for short-pulse, mid-infrared generation,” Opt. Lett.33(10), 1065–1067 (2008).
    [CrossRef] [PubMed]
  9. A. M. Al-Kadry and D. Strickland, “Generation of 400 μW at 17.5 μm using a two-color Yb fiber chirped pulse amplifier,” Opt. Lett.36(7), 1080–1082 (2011).
    [CrossRef] [PubMed]
  10. M. Hajialamdari and D. Strickland, “Tunable mid-infrared source from an ultrafast two-color Yb:fiber chirped-pulse amplifier,” Opt. Lett.37(17), 3570–3572 (2012).
    [CrossRef] [PubMed]
  11. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source,” Opt. Lett.32(9), 1138–1140 (2007).
    [CrossRef] [PubMed]
  12. A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett.33(22), 2671–2673 (2008).
    [CrossRef] [PubMed]
  13. D. G. Winters, P. Schlup, and R. A. Bartels, “Subpicosecond fiber-based soliton-tuned mid-infrared source in the 9.7-14.9 microm wavelength region,” Opt. Lett.35(13), 2179–2181 (2010).
    [CrossRef] [PubMed]
  14. T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett.36(20), 4020–4022 (2011).
    [CrossRef] [PubMed]
  15. A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, and M. Marangoni, “Widely-tunable mid-infrared frequency comb source based on difference frequency generation,” Opt. Lett.37(12), 2232–2234 (2012).
    [CrossRef] [PubMed]
  16. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett.26(6), 358–360 (2001).
    [CrossRef] [PubMed]
  17. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000).
    [CrossRef] [PubMed]
  18. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express12(6), 1045–1054 (2004).
    [CrossRef] [PubMed]
  19. M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express13(16), 6181–6192 (2005).
    [CrossRef] [PubMed]
  20. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express14(3), 1145–1160 (2006).
    [CrossRef] [PubMed]
  21. S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express15(21), 14028–14037 (2007).
    [CrossRef] [PubMed]
  22. P. Klarskov, A. Isomäki, K. P. Hansen, and P. E. Andersen, “Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers,” Opt. Express19(27), 26672–26683 (2011).
    [CrossRef] [PubMed]
  23. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B27(3), 550–559 (2010).
    [CrossRef]
  24. F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett.30(12), 1566–1568 (2005).
    [CrossRef] [PubMed]
  25. P. Falk, M. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express13(19), 7535–7540 (2005).
    [CrossRef] [PubMed]
  26. S. P. Stark, A. Podlipensky, and P. St. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett.106(8), 083903 (2011).
    [CrossRef] [PubMed]
  27. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.55(6), 447–449 (1985).
    [CrossRef]
  28. Y. Deng and W. H. Knox, “Self-starting passive harmonic mode-locked femtosecond Yb3+-doped fiber laser at 1030 nm,” Opt. Lett.29(18), 2121–2123 (2004).
    [CrossRef] [PubMed]
  29. http://www.nktphotonics.com/files/files/NL-1050-ZERO-2.pdf .
  30. J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  31. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett.22(13), 961–963 (1997).
    [CrossRef] [PubMed]
  32. J. H. Lee, J. van Howe, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Generation of femtosecond pulses at 1350 nm by Cerenkov radiation in higher-order-mode fiber,” Opt. Lett.32(9), 1053–1055 (2007).
    [CrossRef] [PubMed]
  33. I. Noda, “Two-dimensional infrared (2D IR) spectroscopy: theory and applications,” Appl. Spectrosc.44(4), 550–561 (1990).
    [CrossRef]

2012 (4)

2011 (4)

2010 (2)

2008 (2)

2007 (3)

2006 (1)

2005 (3)

2004 (2)

2003 (2)

2001 (1)

2000 (1)

1998 (2)

S. Ehret and H. Schneider, “Generation of subpicosecond infrared pulses tunable between 5.2 μm and 18 μm at a repetition rate of 76 MHz,” Appl. Phys. B66(1), 27–30 (1998).
[CrossRef]

R. A. Kaindl, D. C. Smith, M. Joschko, M. P. Hasselbeck, M. Woerner, and T. Elsaesser, “Femtosecond infrared pulses tunable from 9 to 18 μm at an 88-MHz repetition rate,” Opt. Lett.23(11), 861–863 (1998).
[CrossRef] [PubMed]

1997 (1)

1995 (1)

1990 (1)

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.55(6), 447–449 (1985).
[CrossRef]

Adler, F.

Aguirre, A.

Al-Kadry, A. M.

Andersen, P. E.

Andersen, T.

Anis, H.

Bang, O.

Bartels, R. A.

Becker, P. C.

Biegert, J.

Birks, T. A.

Brideau, C.

Chandalia, J. K.

de Barros, M. R. X.

Deng, Y.

Diddams, S. A.

Eggleton, B. J.

Ehret, S.

S. Ehret and H. Schneider, “Generation of subpicosecond infrared pulses tunable between 5.2 μm and 18 μm at a repetition rate of 76 MHz,” Appl. Phys. B66(1), 27–30 (1998).
[CrossRef]

Eikema, K. S. E.

Elsaesser, T.

Erny, C.

Falk, P.

Fermann, M. E.

Foreman, S. M.

Frosz, M.

Fujimoto, J.

Gambetta, A.

Ghalmi, S.

Giessen, H.

Hajialamdari, M.

Hansch, T. W.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
[CrossRef]

Hansen, K.

Hansen, K. P.

Hartl, I.

Hasselbeck, M. P.

Hegenbarth, R.

Heidt, A. M.

Hilligsøe, K. M.

Isomäki, A.

Jedju, T. M.

Johnson, T. A.

Jones, D. J.

Joschko, M.

Kaindl, R. A.

Keiding, S.

Keller, U.

Klarskov, P.

Knight, J. C.

Knox, W. H.

Kopf, D.

Kosinski, S. G.

Kristiansen, R.

Kühlke, D.

Larsen, J.

Lederer, M.

Lee, J. H.

Leitenstorfer, A.

Liu, X.

Lu, F.

Marangoni, M.

Miranda, R. S.

Mølmer, K.

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.55(6), 447–449 (1985).
[CrossRef]

Moutzouris, K.

Murugkar, S.

Naji, M.

Neely, T. W.

Nielsen, C.

Nishizawa, N.

Noda, I.

Paulsen, H.

Pettus, R.

Picque, N.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
[CrossRef]

Podlipensky, A.

S. P. Stark, A. Podlipensky, and P. St. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett.106(8), 083903 (2011).
[CrossRef] [PubMed]

Ramachandran, S.

Ramponi, R.

Ranka, J. K.

Ridsdale, A.

Romero-Alvarez, R.

Ruehl, A.

Russell, P. S. J.

Russell, P. St. J.

S. P. Stark, A. Podlipensky, and P. St. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett.106(8), 083903 (2011).
[CrossRef] [PubMed]

Sarkisov, S.

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
[CrossRef]

Schlup, P.

Schneider, H.

S. Ehret and H. Schneider, “Generation of subpicosecond infrared pulses tunable between 5.2 μm and 18 μm at a repetition rate of 76 MHz,” Appl. Phys. B66(1), 27–30 (1998).
[CrossRef]

Seitz, W.

Smith, D. C.

Stark, S. P.

S. P. Stark, A. Podlipensky, and P. St. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett.106(8), 083903 (2011).
[CrossRef] [PubMed]

Steinmann, A.

Stentz, A. J.

Strickland, D.

Stys, P. K.

van Howe, J.

Windeler, R. S.

Winters, D. G.

Woerner, M.

Wu, Z.

Xu, C.

Yan, M. F.

Ye, J.

Appl. Phys. B (1)

S. Ehret and H. Schneider, “Generation of subpicosecond infrared pulses tunable between 5.2 μm and 18 μm at a repetition rate of 76 MHz,” Appl. Phys. B66(1), 27–30 (1998).
[CrossRef]

Appl. Spectrosc. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics6(7), 440–449 (2012).
[CrossRef]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.55(6), 447–449 (1985).
[CrossRef]

Opt. Express (6)

P. Falk, M. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express13(19), 7535–7540 (2005).
[CrossRef] [PubMed]

K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express12(6), 1045–1054 (2004).
[CrossRef] [PubMed]

M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express13(16), 6181–6192 (2005).
[CrossRef] [PubMed]

A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express14(3), 1145–1160 (2006).
[CrossRef] [PubMed]

S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express15(21), 14028–14037 (2007).
[CrossRef] [PubMed]

P. Klarskov, A. Isomäki, K. P. Hansen, and P. E. Andersen, “Supercontinuum generation for coherent anti-Stokes Raman scattering microscopy with photonic crystal fibers,” Opt. Express19(27), 26672–26683 (2011).
[CrossRef] [PubMed]

Opt. Lett. (18)

R. A. Kaindl, D. C. Smith, M. Joschko, M. P. Hasselbeck, M. Woerner, and T. Elsaesser, “Femtosecond infrared pulses tunable from 9 to 18 μm at an 88-MHz repetition rate,” Opt. Lett.23(11), 861–863 (1998).
[CrossRef] [PubMed]

M. R. X. de Barros, R. S. Miranda, T. M. Jedju, and P. C. Becker, “High-repetition-rate femtosecond mid-infrared pulse generation,” Opt. Lett.20(5), 480–482 (1995).
[CrossRef] [PubMed]

S. M. Foreman, D. J. Jones, and J. Ye, “Flexible and rapidly configurable femtosecond pulse generation in the mid-IR,” Opt. Lett.28(5), 370–372 (2003).
[CrossRef] [PubMed]

R. Hegenbarth, A. Steinmann, S. Sarkisov, and H. Giessen, “Milliwatt-level mid-infrared (10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator,” Opt. Lett.37(17), 3513–3515 (2012).
[CrossRef] [PubMed]

R. Romero-Alvarez, R. Pettus, Z. Wu, and D. Strickland, “Two-color fiber amplifier for short-pulse, mid-infrared generation,” Opt. Lett.33(10), 1065–1067 (2008).
[CrossRef] [PubMed]

A. M. Al-Kadry and D. Strickland, “Generation of 400 μW at 17.5 μm using a two-color Yb fiber chirped pulse amplifier,” Opt. Lett.36(7), 1080–1082 (2011).
[CrossRef] [PubMed]

M. Hajialamdari and D. Strickland, “Tunable mid-infrared source from an ultrafast two-color Yb:fiber chirped-pulse amplifier,” Opt. Lett.37(17), 3570–3572 (2012).
[CrossRef] [PubMed]

C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source,” Opt. Lett.32(9), 1138–1140 (2007).
[CrossRef] [PubMed]

A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett.33(22), 2671–2673 (2008).
[CrossRef] [PubMed]

D. G. Winters, P. Schlup, and R. A. Bartels, “Subpicosecond fiber-based soliton-tuned mid-infrared source in the 9.7-14.9 microm wavelength region,” Opt. Lett.35(13), 2179–2181 (2010).
[CrossRef] [PubMed]

T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett.36(20), 4020–4022 (2011).
[CrossRef] [PubMed]

A. Ruehl, A. Gambetta, I. Hartl, M. E. Fermann, K. S. E. Eikema, and M. Marangoni, “Widely-tunable mid-infrared frequency comb source based on difference frequency generation,” Opt. Lett.37(12), 2232–2234 (2012).
[CrossRef] [PubMed]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett.26(6), 358–360 (2001).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000).
[CrossRef] [PubMed]

F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett.30(12), 1566–1568 (2005).
[CrossRef] [PubMed]

Y. Deng and W. H. Knox, “Self-starting passive harmonic mode-locked femtosecond Yb3+-doped fiber laser at 1030 nm,” Opt. Lett.29(18), 2121–2123 (2004).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett.22(13), 961–963 (1997).
[CrossRef] [PubMed]

J. H. Lee, J. van Howe, C. Xu, S. Ramachandran, S. Ghalmi, and M. F. Yan, “Generation of femtosecond pulses at 1350 nm by Cerenkov radiation in higher-order-mode fiber,” Opt. Lett.32(9), 1053–1055 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. P. Stark, A. Podlipensky, and P. St. J. Russell, “Soliton blueshift in tapered photonic crystal fibers,” Phys. Rev. Lett.106(8), 083903 (2011).
[CrossRef] [PubMed]

Other (2)

http://www.nktphotonics.com/files/files/NL-1050-ZERO-2.pdf .

F. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy solid-state mid-infrared laser sources,” in Solid-State Mid-Infrared Laser Sources I. Sorokina, and K. Vodopyanov, eds. (Springer 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental set-up of the MIR source. Upper part: schematic of the Yb fiber CPA system as pump source. Lower part: layout of the DFG MIR system.

Fig. 2
Fig. 2

(a) Output spectrum of the Yb CPA system (inset: autocorrelation trace); (b) Spectrum of the NDR continuum with 150 mW, 177 mW and 244 mW of coupled-in power; (c) Typical spectrum of the Stokes pulse; (d) Measured power of the Stokes pulse and its SHG from the BBO crystal.

Fig. 3
Fig. 3

Comparison of GaSe (type I) and AgGaS2 (type II) on (a) Spatial walk off angle; (b) pump – signal GVM and pump – idler GVM.

Fig. 4
Fig. 4

(a) Typical spectrum of the MIR pulse at ~5.5 µm; (b) Cross-correlation trace measured by difference frequency generation.

Metrics