Abstract

We have fabricated and characterized fully programmable diffraction gratings consisting of 64 silicon micro-mirrors. The mirrors are 700µm long and 50µm wide with a fill factor of 90%. They are actuated electrostatically and move down by 1.25μm while showing negligible cross-talk and bowing as small as 0.14μm over 700μm. Extinction ratio up to 100 has been achieved by adjusting only 3 adjacent micro-mirrors. The gratings could operate either as light modulators up to 5μm or spectra generators up to 2.5μm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett.17(9), 688–690 (1992).
    [CrossRef] [PubMed]
  2. S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” J. Microlithogr., Microfabr., Microsyst.4, 041401 (2005).
  3. O. Solgaard, D. Lee, Y. Kyoungsik, U. Krishnamoorthy, K. Li, and J. P. Heritage, “Microoptical phased arrays for spatial and spectral switching,” IEEE Commun. Mag.41(3), 96–102 (2003).
  4. R. Lockhart, M. Tormen, P. Niedermann, T. Overstoltz, A. Hoogerwerf, and R. P. Stanley, “High efficiency MEMS tuneable gratings for external cavity lasers and microspectrometers,” in Proceedings of IEEE/LEOS Conference on Optical MEMS and Nanophotonics (Freiburg, Germany, 2008), pp. 33–34.
  5. G. B. Hocker, “The Polychromator: a MEMS diffraction grating for synthetic spectra,” in Proceedings of the Solid-State Sensor and Actuator Workshop (Hilton Head Island, USA, 2000), pp. 89–91.
  6. F. Zamkotsian, P. Lanzoni, T. Viard, and C. Buisset, “New astronomical instrument using MOEMS-based diffraction programmable gratings,” Proc. SPIE7208, 72080I, 72080I-12 (2009).
    [CrossRef]
  7. D. M. Burns and V. M. Bright, “Development of microelectromechanical variable blaze gratings,” Sens. Actuators A Phys.64(1), 7–15 (1998).
    [CrossRef]
  8. B. Timotijevic, R. Lockhart, R. Stanley, M. Luetzelschwab, F. Zamkotsian, P. Lanzoni, W. Noell, M. Canonica, and M. Tormen, “Microfabrication of optically flat silicon micro-mirrors for fully programmable micro-diffraction gratings,” in Proc. Eurosensors XXVI (2012).
  9. S. Senturia, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” Proc. SPIE5348, 1–6 (2004), doi:.
    [CrossRef]
  10. J. Trisnadi, C. Carlisle, and R. Monteverde, “Overview and applications of Grating Light Valve based optical write engines for high-speed digital imaging,” Proc. SPIE5348, 52–64 (2004), doi:.
    [CrossRef]
  11. M. I. Younis, MEMS Linear and Nonlinear Statics and Dynamics (Springer, 2011).
  12. A. Payne, W. DeGroot, R. Monteverde, and D. Amm, “Enabling high data rate imaging applications with Grating Light ValveTM technology,” Proc. SPIE5348, 76–88 (2004), doi:.
    [CrossRef]

2009 (1)

F. Zamkotsian, P. Lanzoni, T. Viard, and C. Buisset, “New astronomical instrument using MOEMS-based diffraction programmable gratings,” Proc. SPIE7208, 72080I, 72080I-12 (2009).
[CrossRef]

2005 (1)

S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” J. Microlithogr., Microfabr., Microsyst.4, 041401 (2005).

2004 (3)

S. Senturia, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” Proc. SPIE5348, 1–6 (2004), doi:.
[CrossRef]

J. Trisnadi, C. Carlisle, and R. Monteverde, “Overview and applications of Grating Light Valve based optical write engines for high-speed digital imaging,” Proc. SPIE5348, 52–64 (2004), doi:.
[CrossRef]

A. Payne, W. DeGroot, R. Monteverde, and D. Amm, “Enabling high data rate imaging applications with Grating Light ValveTM technology,” Proc. SPIE5348, 76–88 (2004), doi:.
[CrossRef]

2003 (1)

O. Solgaard, D. Lee, Y. Kyoungsik, U. Krishnamoorthy, K. Li, and J. P. Heritage, “Microoptical phased arrays for spatial and spectral switching,” IEEE Commun. Mag.41(3), 96–102 (2003).

1998 (1)

D. M. Burns and V. M. Bright, “Development of microelectromechanical variable blaze gratings,” Sens. Actuators A Phys.64(1), 7–15 (1998).
[CrossRef]

1992 (1)

Amm, D.

A. Payne, W. DeGroot, R. Monteverde, and D. Amm, “Enabling high data rate imaging applications with Grating Light ValveTM technology,” Proc. SPIE5348, 76–88 (2004), doi:.
[CrossRef]

Bloom, D. M.

Bright, V. M.

D. M. Burns and V. M. Bright, “Development of microelectromechanical variable blaze gratings,” Sens. Actuators A Phys.64(1), 7–15 (1998).
[CrossRef]

Buisset, C.

F. Zamkotsian, P. Lanzoni, T. Viard, and C. Buisset, “New astronomical instrument using MOEMS-based diffraction programmable gratings,” Proc. SPIE7208, 72080I, 72080I-12 (2009).
[CrossRef]

Burns, D. M.

D. M. Burns and V. M. Bright, “Development of microelectromechanical variable blaze gratings,” Sens. Actuators A Phys.64(1), 7–15 (1998).
[CrossRef]

Butler, M. A.

S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” J. Microlithogr., Microfabr., Microsyst.4, 041401 (2005).

Carlisle, C.

J. Trisnadi, C. Carlisle, and R. Monteverde, “Overview and applications of Grating Light Valve based optical write engines for high-speed digital imaging,” Proc. SPIE5348, 52–64 (2004), doi:.
[CrossRef]

Day, D. R.

S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” J. Microlithogr., Microfabr., Microsyst.4, 041401 (2005).

DeGroot, W.

A. Payne, W. DeGroot, R. Monteverde, and D. Amm, “Enabling high data rate imaging applications with Grating Light ValveTM technology,” Proc. SPIE5348, 76–88 (2004), doi:.
[CrossRef]

Heritage, J. P.

O. Solgaard, D. Lee, Y. Kyoungsik, U. Krishnamoorthy, K. Li, and J. P. Heritage, “Microoptical phased arrays for spatial and spectral switching,” IEEE Commun. Mag.41(3), 96–102 (2003).

Krishnamoorthy, U.

O. Solgaard, D. Lee, Y. Kyoungsik, U. Krishnamoorthy, K. Li, and J. P. Heritage, “Microoptical phased arrays for spatial and spectral switching,” IEEE Commun. Mag.41(3), 96–102 (2003).

Kyoungsik, Y.

O. Solgaard, D. Lee, Y. Kyoungsik, U. Krishnamoorthy, K. Li, and J. P. Heritage, “Microoptical phased arrays for spatial and spectral switching,” IEEE Commun. Mag.41(3), 96–102 (2003).

Lanzoni, P.

F. Zamkotsian, P. Lanzoni, T. Viard, and C. Buisset, “New astronomical instrument using MOEMS-based diffraction programmable gratings,” Proc. SPIE7208, 72080I, 72080I-12 (2009).
[CrossRef]

Lee, D.

O. Solgaard, D. Lee, Y. Kyoungsik, U. Krishnamoorthy, K. Li, and J. P. Heritage, “Microoptical phased arrays for spatial and spectral switching,” IEEE Commun. Mag.41(3), 96–102 (2003).

Li, K.

O. Solgaard, D. Lee, Y. Kyoungsik, U. Krishnamoorthy, K. Li, and J. P. Heritage, “Microoptical phased arrays for spatial and spectral switching,” IEEE Commun. Mag.41(3), 96–102 (2003).

Monteverde, R.

J. Trisnadi, C. Carlisle, and R. Monteverde, “Overview and applications of Grating Light Valve based optical write engines for high-speed digital imaging,” Proc. SPIE5348, 52–64 (2004), doi:.
[CrossRef]

A. Payne, W. DeGroot, R. Monteverde, and D. Amm, “Enabling high data rate imaging applications with Grating Light ValveTM technology,” Proc. SPIE5348, 76–88 (2004), doi:.
[CrossRef]

Payne, A.

A. Payne, W. DeGroot, R. Monteverde, and D. Amm, “Enabling high data rate imaging applications with Grating Light ValveTM technology,” Proc. SPIE5348, 76–88 (2004), doi:.
[CrossRef]

Sandejas, F. S. A.

Senturia, S.

S. Senturia, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” Proc. SPIE5348, 1–6 (2004), doi:.
[CrossRef]

Senturia, S. D.

S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” J. Microlithogr., Microfabr., Microsyst.4, 041401 (2005).

Smith, M. C.

S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” J. Microlithogr., Microfabr., Microsyst.4, 041401 (2005).

Solgaard, O.

O. Solgaard, D. Lee, Y. Kyoungsik, U. Krishnamoorthy, K. Li, and J. P. Heritage, “Microoptical phased arrays for spatial and spectral switching,” IEEE Commun. Mag.41(3), 96–102 (2003).

O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett.17(9), 688–690 (1992).
[CrossRef] [PubMed]

Trisnadi, J.

J. Trisnadi, C. Carlisle, and R. Monteverde, “Overview and applications of Grating Light Valve based optical write engines for high-speed digital imaging,” Proc. SPIE5348, 52–64 (2004), doi:.
[CrossRef]

Viard, T.

F. Zamkotsian, P. Lanzoni, T. Viard, and C. Buisset, “New astronomical instrument using MOEMS-based diffraction programmable gratings,” Proc. SPIE7208, 72080I, 72080I-12 (2009).
[CrossRef]

Zamkotsian, F.

F. Zamkotsian, P. Lanzoni, T. Viard, and C. Buisset, “New astronomical instrument using MOEMS-based diffraction programmable gratings,” Proc. SPIE7208, 72080I, 72080I-12 (2009).
[CrossRef]

IEEE Commun. Mag. (1)

O. Solgaard, D. Lee, Y. Kyoungsik, U. Krishnamoorthy, K. Li, and J. P. Heritage, “Microoptical phased arrays for spatial and spectral switching,” IEEE Commun. Mag.41(3), 96–102 (2003).

J. Microlithogr., Microfabr., Microsyst. (1)

S. D. Senturia, D. R. Day, M. A. Butler, and M. C. Smith, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” J. Microlithogr., Microfabr., Microsyst.4, 041401 (2005).

Opt. Lett. (1)

Proc. SPIE (4)

A. Payne, W. DeGroot, R. Monteverde, and D. Amm, “Enabling high data rate imaging applications with Grating Light ValveTM technology,” Proc. SPIE5348, 76–88 (2004), doi:.
[CrossRef]

S. Senturia, “Programmable diffraction gratings and their uses in displays, spectroscopy, and communications,” Proc. SPIE5348, 1–6 (2004), doi:.
[CrossRef]

J. Trisnadi, C. Carlisle, and R. Monteverde, “Overview and applications of Grating Light Valve based optical write engines for high-speed digital imaging,” Proc. SPIE5348, 52–64 (2004), doi:.
[CrossRef]

F. Zamkotsian, P. Lanzoni, T. Viard, and C. Buisset, “New astronomical instrument using MOEMS-based diffraction programmable gratings,” Proc. SPIE7208, 72080I, 72080I-12 (2009).
[CrossRef]

Sens. Actuators A Phys. (1)

D. M. Burns and V. M. Bright, “Development of microelectromechanical variable blaze gratings,” Sens. Actuators A Phys.64(1), 7–15 (1998).
[CrossRef]

Other (4)

B. Timotijevic, R. Lockhart, R. Stanley, M. Luetzelschwab, F. Zamkotsian, P. Lanzoni, W. Noell, M. Canonica, and M. Tormen, “Microfabrication of optically flat silicon micro-mirrors for fully programmable micro-diffraction gratings,” in Proc. Eurosensors XXVI (2012).

R. Lockhart, M. Tormen, P. Niedermann, T. Overstoltz, A. Hoogerwerf, and R. P. Stanley, “High efficiency MEMS tuneable gratings for external cavity lasers and microspectrometers,” in Proceedings of IEEE/LEOS Conference on Optical MEMS and Nanophotonics (Freiburg, Germany, 2008), pp. 33–34.

G. B. Hocker, “The Polychromator: a MEMS diffraction grating for synthetic spectra,” in Proceedings of the Solid-State Sensor and Actuator Workshop (Hilton Head Island, USA, 2000), pp. 89–91.

M. I. Younis, MEMS Linear and Nonlinear Statics and Dynamics (Springer, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principle of wavelengths selection by using a PMDG. Wavelengths wanted in the output spectrum are reflected while the others are diffracted.

Fig. 2
Fig. 2

Schematic of the FPMDG micro-mirrors, flexures and electrodes.

Fig. 3
Fig. 3

Bowing of the micro-mirror in the non-actuated state (0 V) and the actuated state (50 V). The initial bowing value of 0.12μm over the micro-mirror length of 700μm remains stable for all possible displacements (up to 1/3 of the vertical gap). In this example the gap is 2.4μm.

Fig. 4
Fig. 4

Schematic of the FPMDG characterization bench.

Fig. 5
Fig. 5

Optical response when a single micro-mirror is actuated.

Fig. 6
Fig. 6

Input light dispersed (a) over non-actuated FPMDG; (b) over the FPMDG actuated at 4 spectral positions (micro-mirrors 14, 19, 24 and 28 are biased at 26V).

Fig. 7
Fig. 7

Spectrum of the input light dispersed over the FPMDG actuated at 4 spectral positions; the response is normalized by the spectral response of non-actuated FPMDG.

Fig. 8
Fig. 8

Reproducibility measurement on the 50µm FPMDG chip; superimposition of all photometric responses obtained with non-actuated micro-mirrors (blue curves) and with three actuated micro-mirrors (red curves) representing four sets of 32 measurements.

Tables (1)

Tables Icon

Table 1 FEM modelling of the first (out-of-plane) and the second (in-plane) resonant frequencies for fabricated devices

Metrics