Abstract

We introduce a design strategy to maximize the Near Field (NF) enhancement near plasmonic antennas. We start by identifying and studying the basic electromagnetic effects that contribute to the electric near field enhancement. Next, we show how the concatenation of a convex and a concave surface allows merging all the effects on a single, continuous nanoantenna. As an example of this NF maximization strategy, we engineer a nanostructure, the indented nanocone. This structure, combines all the studied NF maximization effects with a synergistic boost provided by a Fano-like interference effect activated by the presence of the concave surface. As a result, the antenna exhibits a NF amplitude enhancement of ∼ 800, which transforms into ∼1600 when coupled to a perfect metallic surface. This strong enhancement makes the proposed structure a robust candidate to be used in field enhancement based technologies. Further elaborations of the concept may produce even larger and more effective enhancements.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and N. Van Hulst, “Antennas for light,” Nature Photon.5, 83–90 (2011).
    [CrossRef]
  2. H. Xu, E. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999).
    [CrossRef]
  3. F. Neubrech, A. Pucci, T. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 2–5 (2008).
    [CrossRef]
  4. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335 (2005).
    [CrossRef] [PubMed]
  5. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8, 3893 (2008).
    [CrossRef] [PubMed]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat.9, 205–213 (2010).
    [CrossRef]
  7. A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt.14, 024008 (2012).
    [CrossRef]
  8. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett.11, 1111–1116 (2011).
    [CrossRef] [PubMed]
  9. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E62, 4318–4324 (2000).
    [CrossRef]
  10. P. Nordlander and C. Oubre, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4, 899–903 (2004).
    [CrossRef]
  11. K. Li, M. Stockman, and D. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91, 227402 (2003).
    [CrossRef] [PubMed]
  12. M. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004).
    [CrossRef] [PubMed]
  13. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic dimple lens for nanoscale focusing of light,” Nano Lett.9, 34473452, (2009).
    [CrossRef] [PubMed]
  14. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photon.4, 83–91 (2010).
    [CrossRef]
  15. F. J. García, De Abajo, and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65, 115418 (2002).
    [CrossRef]
  16. F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett.80, 5180–5183 (1998).
    [CrossRef]
  17. C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles” (Wiley, New York, 1983).
  18. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, AI, Ga, In, Zn, and Cd,” J. Phys. Chem.91, 634–643 (1987).
    [CrossRef]
  19. Y. Kornyushin, “Plasma oscillations in porous samples,” Sci. Sinter.36, 43–50 (2004).
    [CrossRef]
  20. H. Xu, E. J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Hook, and M. Kall, “Interparticle coupling effects in surface-enhanced Raman scattering,” Proc. SPIE4258, 35–42 (2001).
    [CrossRef]
  21. I. Romero, J. Aizpurua, G. W. Bryant, F. J. García, and De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express14, 9988–99 (2006).
    [CrossRef] [PubMed]
  22. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 (2003).
    [CrossRef] [PubMed]
  23. J Aizpurua, F. J. Garcá de Abajo, and G. W. Bryant, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631 (2008).
    [CrossRef] [PubMed]
  24. A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
    [CrossRef] [PubMed]
  25. T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
    [CrossRef] [PubMed]
  26. C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12, 2037–2044 (2012).
    [CrossRef] [PubMed]
  27. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109, 127701 (2012).
    [CrossRef] [PubMed]
  28. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ”bowtie” nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
    [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 43704379 (1972).
    [CrossRef]
  30. J. Aizpurua, S. P. Apell, and R. Berndt, “Role of the tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62, 2065–2073 (2000).
    [CrossRef]
  31. F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B56, 15873–15884 (1997).
    [CrossRef]
  32. J. Aizpurua, A. Howie, and F. J. Garcá de Abajo, “Valence-electron energy loss near edges, truncated slabs, and junctions,” Phys. Rev. B60, 11149–11162 (1999).
    [CrossRef]
  33. S. P. Apell, P. M. Echenique, and R. H. Ritchie, “Sum rules for surface plasmon frequencies,” Ultramicroscopy65, 53–60 (1996).
    [CrossRef]
  34. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
    [CrossRef] [PubMed]
  35. B. Lukýanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Tow Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater.9, 707–715 (2010).
    [CrossRef]
  36. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Optics Expr.15, 8550–8565 (2007).
    [CrossRef]
  37. S. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett.11, 39273934 (2011).
    [CrossRef] [PubMed]
  38. F. Neubrech, A. García-Etxarri, D. Weber, J Bochterle, H. Shen, M. Lamy, De La Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96, 213111 (2010).
    [CrossRef]

2012

A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt.14, 024008 (2012).
[CrossRef]

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12, 2037–2044 (2012).
[CrossRef] [PubMed]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109, 127701 (2012).
[CrossRef] [PubMed]

2011

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
[CrossRef] [PubMed]

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett.11, 1111–1116 (2011).
[CrossRef] [PubMed]

L. Novotny and N. Van Hulst, “Antennas for light,” Nature Photon.5, 83–90 (2011).
[CrossRef]

S. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett.11, 39273934 (2011).
[CrossRef] [PubMed]

2010

F. Neubrech, A. García-Etxarri, D. Weber, J Bochterle, H. Shen, M. Lamy, De La Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96, 213111 (2010).
[CrossRef]

B. Lukýanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Tow Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater.9, 707–715 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat.9, 205–213 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photon.4, 83–91 (2010).
[CrossRef]

2009

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic dimple lens for nanoscale focusing of light,” Nano Lett.9, 34473452, (2009).
[CrossRef] [PubMed]

2008

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8, 3893 (2008).
[CrossRef] [PubMed]

F. Neubrech, A. Pucci, T. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 2–5 (2008).
[CrossRef]

J Aizpurua, F. J. Garcá de Abajo, and G. W. Bryant, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631 (2008).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

2007

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Optics Expr.15, 8550–8565 (2007).
[CrossRef]

2006

2005

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335 (2005).
[CrossRef] [PubMed]

2004

M. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004).
[CrossRef] [PubMed]

P. Nordlander and C. Oubre, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

Y. Kornyushin, “Plasma oscillations in porous samples,” Sci. Sinter.36, 43–50 (2004).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ”bowtie” nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
[CrossRef]

2003

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 (2003).
[CrossRef] [PubMed]

K. Li, M. Stockman, and D. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91, 227402 (2003).
[CrossRef] [PubMed]

2002

F. J. García, De Abajo, and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65, 115418 (2002).
[CrossRef]

2001

H. Xu, E. J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Hook, and M. Kall, “Interparticle coupling effects in surface-enhanced Raman scattering,” Proc. SPIE4258, 35–42 (2001).
[CrossRef]

2000

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of the tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62, 2065–2073 (2000).
[CrossRef]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E62, 4318–4324 (2000).
[CrossRef]

1999

H. Xu, E. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999).
[CrossRef]

J. Aizpurua, A. Howie, and F. J. Garcá de Abajo, “Valence-electron energy loss near edges, truncated slabs, and junctions,” Phys. Rev. B60, 11149–11162 (1999).
[CrossRef]

1998

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett.80, 5180–5183 (1998).
[CrossRef]

1997

F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B56, 15873–15884 (1997).
[CrossRef]

1996

S. P. Apell, P. M. Echenique, and R. H. Ritchie, “Sum rules for surface plasmon frequencies,” Ultramicroscopy65, 53–60 (1996).
[CrossRef]

1987

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, AI, Ga, In, Zn, and Cd,” J. Phys. Chem.91, 634–643 (1987).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 43704379 (1972).
[CrossRef]

Abajo, De

Aizpurua, J

J Aizpurua, F. J. Garcá de Abajo, and G. W. Bryant, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631 (2008).
[CrossRef] [PubMed]

Aizpurua, J.

F. Neubrech, A. García-Etxarri, D. Weber, J Bochterle, H. Shen, M. Lamy, De La Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96, 213111 (2010).
[CrossRef]

F. Neubrech, A. Pucci, T. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 2–5 (2008).
[CrossRef]

I. Romero, J. Aizpurua, G. W. Bryant, F. J. García, and De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express14, 9988–99 (2006).
[CrossRef] [PubMed]

H. Xu, E. J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Hook, and M. Kall, “Interparticle coupling effects in surface-enhanced Raman scattering,” Proc. SPIE4258, 35–42 (2001).
[CrossRef]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E62, 4318–4324 (2000).
[CrossRef]

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of the tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62, 2065–2073 (2000).
[CrossRef]

J. Aizpurua, A. Howie, and F. J. Garcá de Abajo, “Valence-electron energy loss near edges, truncated slabs, and junctions,” Phys. Rev. B60, 11149–11162 (1999).
[CrossRef]

F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B56, 15873–15884 (1997).
[CrossRef]

Alaeian, H.

A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt.14, 024008 (2012).
[CrossRef]

Alaverdyan, Y.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335 (2005).
[CrossRef] [PubMed]

Apell, P.

H. Xu, E. J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Hook, and M. Kall, “Interparticle coupling effects in surface-enhanced Raman scattering,” Proc. SPIE4258, 35–42 (2001).
[CrossRef]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E62, 4318–4324 (2000).
[CrossRef]

Apell, S. P.

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of the tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62, 2065–2073 (2000).
[CrossRef]

S. P. Apell, P. M. Echenique, and R. H. Ritchie, “Sum rules for surface plasmon frequencies,” Ultramicroscopy65, 53–60 (1996).
[CrossRef]

Ashby, P.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

Atre, A. C.

A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt.14, 024008 (2012).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat.9, 205–213 (2010).
[CrossRef]

Aykol, M.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett.11, 1111–1116 (2011).
[CrossRef] [PubMed]

Bergman, D.

K. Li, M. Stockman, and D. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91, 227402 (2003).
[CrossRef] [PubMed]

Berndt, R.

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of the tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62, 2065–2073 (2000).
[CrossRef]

Bjerneld, E.

H. Xu, E. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999).
[CrossRef]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Hook, and M. Kall, “Interparticle coupling effects in surface-enhanced Raman scattering,” Proc. SPIE4258, 35–42 (2001).
[CrossRef]

Bochterle, J

F. Neubrech, A. García-Etxarri, D. Weber, J Bochterle, H. Shen, M. Lamy, De La Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96, 213111 (2010).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles” (Wiley, New York, 1983).

Bokor, J.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
[CrossRef] [PubMed]

Börjesson, L.

H. Xu, E. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photon.4, 83–91 (2010).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Bryant, G. W.

F. Neubrech, A. García-Etxarri, D. Weber, J Bochterle, H. Shen, M. Lamy, De La Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96, 213111 (2010).
[CrossRef]

J Aizpurua, F. J. Garcá de Abajo, and G. W. Bryant, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631 (2008).
[CrossRef] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant, F. J. García, and De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express14, 9988–99 (2006).
[CrossRef] [PubMed]

Cabrini, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
[CrossRef] [PubMed]

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

Capretti, A.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12, 2037–2044 (2012).
[CrossRef] [PubMed]

Chen, S.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8, 3893 (2008).
[CrossRef] [PubMed]

Choo, H.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 43704379 (1972).
[CrossRef]

Conway, J.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic dimple lens for nanoscale focusing of light,” Nano Lett.9, 34473452, (2009).
[CrossRef] [PubMed]

Cornaglia, M.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

Cornelius, T.

F. Neubrech, A. Pucci, T. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 2–5 (2008).
[CrossRef]

Cronin, S. B.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett.11, 1111–1116 (2011).
[CrossRef] [PubMed]

Cvitkovic, A.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Optics Expr.15, 8550–8565 (2007).
[CrossRef]

Dahlin, A.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335 (2005).
[CrossRef] [PubMed]

Dal Negro, L.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12, 2037–2044 (2012).
[CrossRef] [PubMed]

Dhuey, S.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
[CrossRef] [PubMed]

Dionne, J. A.

A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt.14, 024008 (2012).
[CrossRef]

S. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett.11, 39273934 (2011).
[CrossRef] [PubMed]

Dmitriev, A.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8, 3893 (2008).
[CrossRef] [PubMed]

Echenique, P. M.

S. P. Apell, P. M. Echenique, and R. H. Ritchie, “Sum rules for surface plasmon frequencies,” Ultramicroscopy65, 53–60 (1996).
[CrossRef]

Feichtner, T.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109, 127701 (2012).
[CrossRef] [PubMed]

Forestiere, C.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12, 2037–2044 (2012).
[CrossRef] [PubMed]

Fredriksson, H.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8, 3893 (2008).
[CrossRef] [PubMed]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ”bowtie” nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
[CrossRef]

Garcá de Abajo, F. J.

J Aizpurua, F. J. Garcá de Abajo, and G. W. Bryant, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631 (2008).
[CrossRef] [PubMed]

J. Aizpurua, A. Howie, and F. J. Garcá de Abajo, “Valence-electron energy loss near edges, truncated slabs, and junctions,” Phys. Rev. B60, 11149–11162 (1999).
[CrossRef]

García, F. J.

García de Abajo, F. J.

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett.80, 5180–5183 (1998).
[CrossRef]

F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B56, 15873–15884 (1997).
[CrossRef]

Garcia-Etxarri, A.

F. Neubrech, A. Pucci, T. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 2–5 (2008).
[CrossRef]

García-Etxarri, A.

A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt.14, 024008 (2012).
[CrossRef]

S. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett.11, 39273934 (2011).
[CrossRef] [PubMed]

F. Neubrech, A. García-Etxarri, D. Weber, J Bochterle, H. Shen, M. Lamy, De La Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96, 213111 (2010).
[CrossRef]

García-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Giessen, H.

B. Lukýanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Tow Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater.9, 707–715 (2010).
[CrossRef]

Gordon, R.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photon.4, 83–91 (2010).
[CrossRef]

Gunnarsson, L.

H. Xu, E. J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Hook, and M. Kall, “Interparticle coupling effects in surface-enhanced Raman scattering,” Proc. SPIE4258, 35–42 (2001).
[CrossRef]

Hägglund, C.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8, 3893 (2008).
[CrossRef] [PubMed]

Halas, N. J.

B. Lukýanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Tow Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater.9, 707–715 (2010).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 (2003).
[CrossRef] [PubMed]

Hecht, B.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109, 127701 (2012).
[CrossRef] [PubMed]

Hillenbrand, R.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Optics Expr.15, 8550–8565 (2007).
[CrossRef]

Hook, F.

H. Xu, E. J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Hook, and M. Kall, “Interparticle coupling effects in surface-enhanced Raman scattering,” Proc. SPIE4258, 35–42 (2001).
[CrossRef]

Höök, F.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335 (2005).
[CrossRef] [PubMed]

Hou, W.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett.11, 1111–1116 (2011).
[CrossRef] [PubMed]

Howie, A.

F. J. García, De Abajo, and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65, 115418 (2002).
[CrossRef]

J. Aizpurua, A. Howie, and F. J. Garcá de Abajo, “Valence-electron energy loss near edges, truncated slabs, and junctions,” Phys. Rev. B60, 11149–11162 (1999).
[CrossRef]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett.80, 5180–5183 (1998).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles” (Wiley, New York, 1983).

Ismach, A.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

Jamshidi, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 43704379 (1972).
[CrossRef]

Kall, M.

H. Xu, E. J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Hook, and M. Kall, “Interparticle coupling effects in surface-enhanced Raman scattering,” Proc. SPIE4258, 35–42 (2001).
[CrossRef]

Käll, M.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8, 3893 (2008).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335 (2005).
[CrossRef] [PubMed]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E62, 4318–4324 (2000).
[CrossRef]

H. Xu, E. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999).
[CrossRef]

Karim, S.

F. Neubrech, A. Pucci, T. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 2–5 (2008).
[CrossRef]

Kasemo, B.

H. Xu, E. J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Hook, and M. Kall, “Interparticle coupling effects in surface-enhanced Raman scattering,” Proc. SPIE4258, 35–42 (2001).
[CrossRef]

Kim, M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
[CrossRef] [PubMed]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ”bowtie” nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
[CrossRef]

Kiunke, M.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109, 127701 (2012).
[CrossRef] [PubMed]

Kornyushin, Y.

Y. Kornyushin, “Plasma oscillations in porous samples,” Sci. Sinter.36, 43–50 (2004).
[CrossRef]

La Chapelle, De

F. Neubrech, A. García-Etxarri, D. Weber, J Bochterle, H. Shen, M. Lamy, De La Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96, 213111 (2010).
[CrossRef]

Lakhani, A.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
[CrossRef] [PubMed]

Lamy, M.

F. Neubrech, A. García-Etxarri, D. Weber, J Bochterle, H. Shen, M. Lamy, De La Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96, 213111 (2010).
[CrossRef]

Larsson, C.

H. Xu, E. J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Hook, and M. Kall, “Interparticle coupling effects in surface-enhanced Raman scattering,” Proc. SPIE4258, 35–42 (2001).
[CrossRef]

Lee, H.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic dimple lens for nanoscale focusing of light,” Nano Lett.9, 34473452, (2009).
[CrossRef] [PubMed]

Lee, S. Y.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12, 2037–2044 (2012).
[CrossRef] [PubMed]

Li, K.

K. Li, M. Stockman, and D. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91, 227402 (2003).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett.11, 1111–1116 (2011).
[CrossRef] [PubMed]

Lukýanchuk, B.

B. Lukýanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Tow Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater.9, 707–715 (2010).
[CrossRef]

Maier, S. A.

B. Lukýanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Tow Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater.9, 707–715 (2010).
[CrossRef]

Martín-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Miano, G.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12, 2037–2044 (2012).
[CrossRef] [PubMed]

Moerner, W.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ”bowtie” nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
[CrossRef]

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Neubrech, F.

F. Neubrech, A. García-Etxarri, D. Weber, J Bochterle, H. Shen, M. Lamy, De La Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96, 213111 (2010).
[CrossRef]

F. Neubrech, A. Pucci, T. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 2–5 (2008).
[CrossRef]

Nordlander, P.

B. Lukýanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Tow Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater.9, 707–715 (2010).
[CrossRef]

P. Nordlander and C. Oubre, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 (2003).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nature Photon.5, 83–90 (2011).
[CrossRef]

Ocelic, N.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Optics Expr.15, 8550–8565 (2007).
[CrossRef]

Ogletree, D. F.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

Oubre, C.

P. Nordlander and C. Oubre, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

Pakizeh, T.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8, 3893 (2008).
[CrossRef] [PubMed]

Pang, Y.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

Pasquale, A. J.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12, 2037–2044 (2012).
[CrossRef] [PubMed]

Pavaskar, P.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett.11, 1111–1116 (2011).
[CrossRef] [PubMed]

Petronis, S.

H. Xu, E. J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Hook, and M. Kall, “Interparticle coupling effects in surface-enhanced Raman scattering,” Proc. SPIE4258, 35–42 (2001).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat.9, 205–213 (2010).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 (2003).
[CrossRef] [PubMed]

Pucci, A.

F. Neubrech, A. García-Etxarri, D. Weber, J Bochterle, H. Shen, M. Lamy, De La Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96, 213111 (2010).
[CrossRef]

F. Neubrech, A. Pucci, T. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 2–5 (2008).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 (2003).
[CrossRef] [PubMed]

Reinhard, B. M.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12, 2037–2044 (2012).
[CrossRef] [PubMed]

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335 (2005).
[CrossRef] [PubMed]

Ritchie, R. H.

S. P. Apell, P. M. Echenique, and R. H. Ritchie, “Sum rules for surface plasmon frequencies,” Ultramicroscopy65, 53–60 (1996).
[CrossRef]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Romero, I.

Salmeron, M. B.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

Schatz, G. C.

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, AI, Ga, In, Zn, and Cd,” J. Phys. Chem.91, 634–643 (1987).
[CrossRef]

Schuck, P. J.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ”bowtie” nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
[CrossRef]

Schwartzberg, A.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

Schwartzberg, A. M.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
[CrossRef] [PubMed]

Selig, O.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109, 127701 (2012).
[CrossRef] [PubMed]

Seok, T. J.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
[CrossRef] [PubMed]

Sheikholeslami, S.

S. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett.11, 39273934 (2011).
[CrossRef] [PubMed]

Shen, H.

F. Neubrech, A. García-Etxarri, D. Weber, J Bochterle, H. Shen, M. Lamy, De La Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96, 213111 (2010).
[CrossRef]

Staffaroni, M.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic dimple lens for nanoscale focusing of light,” Nano Lett.9, 34473452, (2009).
[CrossRef] [PubMed]

Stockman, M.

M. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004).
[CrossRef] [PubMed]

K. Li, M. Stockman, and D. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91, 227402 (2003).
[CrossRef] [PubMed]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ”bowtie” nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
[CrossRef]

Sutherland, D. S.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8, 3893 (2008).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335 (2005).
[CrossRef] [PubMed]

Tamburrino, A.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12, 2037–2044 (2012).
[CrossRef] [PubMed]

Tang, J.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic dimple lens for nanoscale focusing of light,” Nano Lett.9, 34473452, (2009).
[CrossRef] [PubMed]

Tow Chong, C.

B. Lukýanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Tow Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater.9, 707–715 (2010).
[CrossRef]

Urban, J. J.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nature Photon.5, 83–90 (2011).
[CrossRef]

Vedantam, S.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic dimple lens for nanoscale focusing of light,” Nano Lett.9, 34473452, (2009).
[CrossRef] [PubMed]

Weber, D.

F. Neubrech, A. García-Etxarri, D. Weber, J Bochterle, H. Shen, M. Lamy, De La Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96, 213111 (2010).
[CrossRef]

Weber-Bargioni, A.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

Wu, M. C.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
[CrossRef] [PubMed]

Xu, H.

H. Xu, E. J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Hook, and M. Kall, “Interparticle coupling effects in surface-enhanced Raman scattering,” Proc. SPIE4258, 35–42 (2001).
[CrossRef]

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E62, 4318–4324 (2000).
[CrossRef]

H. Xu, E. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999).
[CrossRef]

Yablonovitch, E.

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
[CrossRef] [PubMed]

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic dimple lens for nanoscale focusing of light,” Nano Lett.9, 34473452, (2009).
[CrossRef] [PubMed]

Zeman, E. J.

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, AI, Ga, In, Zn, and Cd,” J. Phys. Chem.91, 634–643 (1987).
[CrossRef]

Zheludev, N. I.

B. Lukýanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Tow Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater.9, 707–715 (2010).
[CrossRef]

Appl. Phys. Lett.

F. Neubrech, A. García-Etxarri, D. Weber, J Bochterle, H. Shen, M. Lamy, De La Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96, 213111 (2010).
[CrossRef]

J. Opt.

A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt.14, 024008 (2012).
[CrossRef]

J. Phys. Chem.

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, AI, Ga, In, Zn, and Cd,” J. Phys. Chem.91, 634–643 (1987).
[CrossRef]

Nano Lett.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic dimple lens for nanoscale focusing of light,” Nano Lett.9, 34473452, (2009).
[CrossRef] [PubMed]

Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett.11, 1111–1116 (2011).
[CrossRef] [PubMed]

P. Nordlander and C. Oubre, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4, 899–903 (2004).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335 (2005).
[CrossRef] [PubMed]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8, 3893 (2008).
[CrossRef] [PubMed]

S. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett.11, 39273934 (2011).
[CrossRef] [PubMed]

J Aizpurua, F. J. Garcá de Abajo, and G. W. Bryant, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631 (2008).
[CrossRef] [PubMed]

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011).
[CrossRef] [PubMed]

T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011).
[CrossRef] [PubMed]

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12, 2037–2044 (2012).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ”bowtie” nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004).
[CrossRef]

Nature Mat.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat.9, 205–213 (2010).
[CrossRef]

Nature Mater.

B. Lukýanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Tow Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater.9, 707–715 (2010).
[CrossRef]

Nature Photon.

L. Novotny and N. Van Hulst, “Antennas for light,” Nature Photon.5, 83–90 (2011).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photon.4, 83–91 (2010).
[CrossRef]

Opt. Express

Optics Expr.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Optics Expr.15, 8550–8565 (2007).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 43704379 (1972).
[CrossRef]

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of the tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62, 2065–2073 (2000).
[CrossRef]

F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B56, 15873–15884 (1997).
[CrossRef]

J. Aizpurua, A. Howie, and F. J. Garcá de Abajo, “Valence-electron energy loss near edges, truncated slabs, and junctions,” Phys. Rev. B60, 11149–11162 (1999).
[CrossRef]

F. J. García, De Abajo, and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65, 115418 (2002).
[CrossRef]

Phys. Rev. E

H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E62, 4318–4324 (2000).
[CrossRef]

Phys. Rev. Lett.

K. Li, M. Stockman, and D. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91, 227402 (2003).
[CrossRef] [PubMed]

M. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004).
[CrossRef] [PubMed]

H. Xu, E. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999).
[CrossRef]

F. Neubrech, A. Pucci, T. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 2–5 (2008).
[CrossRef]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett.80, 5180–5183 (1998).
[CrossRef]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109, 127701 (2012).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Proc. SPIE

H. Xu, E. J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Hook, and M. Kall, “Interparticle coupling effects in surface-enhanced Raman scattering,” Proc. SPIE4258, 35–42 (2001).
[CrossRef]

Sci. Sinter.

Y. Kornyushin, “Plasma oscillations in porous samples,” Sci. Sinter.36, 43–50 (2004).
[CrossRef]

Science

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 (2003).
[CrossRef] [PubMed]

Ultramicroscopy

S. P. Apell, P. M. Echenique, and R. H. Ritchie, “Sum rules for surface plasmon frequencies,” Ultramicroscopy65, 53–60 (1996).
[CrossRef]

Other

C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles” (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Evolution of the near-field amplitude enhancement spectra 1 nm above the surface of one of the extremities of different metallic structures when changing different parameters of the system. Calculations were performed by using the BEM. Incident electric field polarization is chosen to be parallel to the rod axis. Vacuum is assumed as the embedding material. a) Material: Near field enhancement in the surroundings of three different 5 nm radius spheres made of Coper, Gold and Silver. Smaller damping factors give rise to sharper resonances and higher values for the maximum field enhancement. b) Size effect: Modification of the volume of the system V, keeping the distance between the surface and the observation point constant. The field enhancement on the surroundings of three silver spheres of different radii (r = 5, 10, 15 nm) is calculated. The near field enhancement increases with the volume, saturating for large volumes as V approaches the apparent volume Vd. c) Lightning rod effect: Modification of the length keeping the volume and the distance to the observation point of the system constant, so that V/Vd ≈ 1, for different rod radii r. Sharper structures give rise to higher values of the field enhancement due to the lighting rod effect. d) Coupling: System composed of a rod and a sphere, for different separation distances (d) between the rod and the sphere. The near field in this latter case is evaluated at the center of the gap. Smaller separation distances produce a stronger coupling and a higher field enhancement.

Fig. 2
Fig. 2

Optical response of a 300 nm height, 10 nm radius and 30° aperture angle silver nanocone a) Extinction cross section in arbitrary units with incident light as displayed in the inset. b) Near-field amplitude enhancement spectra of the silver cone calculated 1 nm bellow the cone apex. c) Surface charge density profile of a cross section of the cone for λ = 985 nm. Blue and red areas indicate regions where the surface charge density is negative and positive respectively. The charge density distribution presents azimuthal symmetry. d) Near-field enhancement distribution of the cone for normal incident light of λ = 985 nm polarized along the cone axis. The optical response of the cone is mainly characterized by a strong localization at the cone apex giving rise to a maximum field enhancement of ∼ 40.

Fig. 3
Fig. 3

Surface charge density (σ) plots, in arbitrary units, for the lowest energy modes of a a) convex and b) concave perfect metallic surface. The lowest energy mode for the convex surface presents a symmetric charge density distribution. On a concave structure instead, the surface charge density mode is antisymmetric, presenting a node at the concavity. For an elaborate discussion about these simulations see Ref. [31]. A combination of both kinds of surfaces allows to localize the surface charge density in sharp regions as well as to couple the charges with opposite sign excited at both sides of the concave surface.

Fig. 4
Fig. 4

Cross section of the geometry of the indented nanocone. a) The combination of the four field enhancement ingredients (a large volume, the localization of the charge density at the edges and the coupling), permits the creation of a field enhancement of ∼ 800 at the tip apex (see Fig. 5) b) Geometrical details of the proposed structure. The upper arrow indicates the rotational symmetry axis of the geometry.

Fig. 5
Fig. 5

Optical response of the indented nanocone depicted in Fig. 4. a) Extinction cross section in arbitrary units for the incident polarization displayed in the inset. b) Near-field enhancement spectra of the silver indented nanocone calculated 1 nm below the cone apex. c) Cross section of the surface charge density profile of the indented nanocone for λ = 1061 nm (in arbitrary units) d) Near-field enhancement distribution of the system for normal incident light at λ = 1061 nm polarized along the cone axis. The proposed structure, allows for the combination of the field enhancement ingredients introduced in Fig. 1, giving rise to field enhancement factors of ∼ 800 in amplitude.

Fig. 6
Fig. 6

Optical response of the silver indented nanocone for different central tip lengths h. a) Extinction cross section in arbitrary units. The lineshape of the Fano-like interference can be tailored by modifying the central tip length. b) Near-field enhancement spectra calculated 1 nm below the cone apex. The maximum field enhancement occurs for h = 70 nm.

Fig. 7
Fig. 7

Indented nanocone coupled to a perfect metallic surface. a) Near-field amplitude spectra for different separation distances d = (4, 3, 2, 1 nm). b) Near field map for a separation distance of 1 nm at λ = 1212 nm. The extra coupling results in a maximum field enhancement of ∼ 1600 in amplitude.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α j j ( ω ) = 4 π ε 0 V L j ε P ( ω ) ε M ( ω ) ε P ( ω ) ε M ( ω ) + ε M ( ω ) / L j = α 0 f ( ω ) ,
ε P / ε 0 = 1 ω p 2 ω ( ω + i γ )
| E / E 0 | V L j V d L j / 2 [ ( L j Ω ) 2 + ( Γ / 2 ) 2 ] 1 / 2 ,
L a = b 2 c 2 a 2 b 2 + a 2 c 2 + b 2 c 2 .
L a = a 2 / K a a 2 / K a + b 2 / K b + c 2 / K c . 1 2 b 2 K a .
N F max ( d ) = N F o d / d o .

Metrics