Abstract

This paper proposes a novel secure communication technique using constellation masking for applications in orthogonal frequency division multiplexing passive optical network (OFDM-PON). The constellation masking is applied both on each subcarrier and among different subcarriers. The Arnold mapping is utilized as the parameter function for the mask factors. A interleave length is employed to provide a scalable masking granularity for different ONUs. A 15.54 Gb/s constellation-masked 32QAM-OFDM signal has been successfully transmitted over 25-km single mode fiber in the experiment. Experimental results show that the proposed scheme can effectively protect the system from illegal ONU without wasting the bandwidth. The constellation-masked technique suggests an effective solution for the physical secure communication in future OFDM access network.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Jain, F. Effenberger, A. Szabo, and A. Zhishan Feng, “Forcucci, Wei Guo, Yuanqiu Luo, R. Mapes, Yixin Zhang, and V. O’Byrne, “The XG-PON system: cost effective 10Gb/s access,” J. Lightwave Technol.29(4), 403–409 (2011).
  2. J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag.48(2), 56–65 (2010).
    [CrossRef]
  3. S. Jain, F. Effenberger, A. Szabo, A. Zhishan Feng, A. Forcucci, R. Wei Guo, R. Yuanqiu Luo, Mapes, Yixin Zhang, and V. O’Byrne, “The world’s first XG-PON field trial,” J. Lightwave Technol.29(4), 524–528 (2011).
    [CrossRef]
  4. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON with polarization multiplexing and direct detection,” J. Lightwave Technol.28(4), 484–493 (2010).
    [CrossRef]
  5. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol.30(4), 384–398 (2012).
    [CrossRef]
  6. H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
    [CrossRef]
  7. J. L. Wei, A. Hamié, R. P. Gidding, E. Hugues-Salas, X. Zheng, S. Mansoor, and J. M. Tang, “Adaptively modulated optical OFDM modems utilizing RSOAs as intensity modulators in IMDD SMF transmission systems,” Opt. Express18(8), 8556–8573 (2010).
    [CrossRef] [PubMed]
  8. W. Shieh, “OFDM for flexible high-speed optical networks,” J. Lightwave Technol.29(10), 1560–1577 (2011).
    [CrossRef]
  9. S. Etemad, A. Agarwal, T. Banwell, G. D. Crescenzo, J. Jackel, R. Menendez, and P. Toliver, “An overlay photonic layer security approach scalable to 100 Gb/s,” IEEE Commun. Mag.46(8), 32–39 (2008).
    [CrossRef]
  10. G. Cincotti, V. Sacchieri, G. Manzacca, N. Kataoka, N. Wada, N. Nakagawa, and K. Kitayama, “Physical layer security: All-optical cryptography in access networks,” in Proc. ICTON’08, paper.We.A4.2 (2008).
  11. M. Hossen, K.-D. Kim, and Y. Park, “Synchronized latency secured MAC protocol for PON based large sensor network”, in Proc. ICACT’10, 1528–1532(2010).
  12. M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security6(3), 725–736 (2011).
    [CrossRef]
  13. A. Harris, D. R. Jones, K. H. Horbatuck, and A. Sierra, “A novel wavelength hopping passive optical network (WH-PON) for provision of enhanced physical security,” J. Opt. Comm. Netw.4(3), 289–295 (2012).
    [CrossRef]
  14. I. Choi, R. J. Young, and P. D. Townsend, “Quantum key distribution on a 10Gb/s WDM-PON,” Opt. Express18(9), 9600–9612 (2010).
    [CrossRef] [PubMed]
  15. P. R. Prucnal, M. P. Fok, Y. Deng, and Z. Wang, “Physical layer security in fiber-optic networks using optical signal processing,” in Proc. ACP’09, China, paper.76321M–10 (2009).
  16. G. Cincotti, N. Wada, and K. Kitayama, “Secure optical bit- and block-cipher transmission using a single multiport encoder/decoder,” in Proc. OFC’08, USA, paper.JThA93 (2008).
  17. L. Zhang, X. Xin, B. Liu, and J. Yu, “Physical-enhanced secure strategy in an OFDM-PON,” Opt. Express20(3), 2255–2265 (2012).
    [CrossRef] [PubMed]
  18. L. Zhang, X. Xin, B. Liu, and X. Yin, “Physical secure enhancement in optical OFDMA-PON based on two-dimentional scrambling,” in Proc. ECOC’12, paper.P6.01(2012).
  19. C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J.28, 656–715 (1949).
  20. M. Christopher, “And the world's fastest supercomputer in 2012 Is - technology review,” website: http://www.technologyreview.com/view/421600/and-the-worlds-fastest-supercomputer-in-2012-is/

2012

N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol.30(4), 384–398 (2012).
[CrossRef]

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

A. Harris, D. R. Jones, K. H. Horbatuck, and A. Sierra, “A novel wavelength hopping passive optical network (WH-PON) for provision of enhanced physical security,” J. Opt. Comm. Netw.4(3), 289–295 (2012).
[CrossRef]

L. Zhang, X. Xin, B. Liu, and J. Yu, “Physical-enhanced secure strategy in an OFDM-PON,” Opt. Express20(3), 2255–2265 (2012).
[CrossRef] [PubMed]

2011

2010

2008

S. Etemad, A. Agarwal, T. Banwell, G. D. Crescenzo, J. Jackel, R. Menendez, and P. Toliver, “An overlay photonic layer security approach scalable to 100 Gb/s,” IEEE Commun. Mag.46(8), 32–39 (2008).
[CrossRef]

1949

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J.28, 656–715 (1949).

Agarwal, A.

S. Etemad, A. Agarwal, T. Banwell, G. D. Crescenzo, J. Jackel, R. Menendez, and P. Toliver, “An overlay photonic layer security approach scalable to 100 Gb/s,” IEEE Commun. Mag.46(8), 32–39 (2008).
[CrossRef]

Banwell, T.

S. Etemad, A. Agarwal, T. Banwell, G. D. Crescenzo, J. Jackel, R. Menendez, and P. Toliver, “An overlay photonic layer security approach scalable to 100 Gb/s,” IEEE Commun. Mag.46(8), 32–39 (2008).
[CrossRef]

Chen, H.-Y.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Chen, J.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag.48(2), 56–65 (2010).
[CrossRef]

Choi, I.

Crescenzo, G. D.

S. Etemad, A. Agarwal, T. Banwell, G. D. Crescenzo, J. Jackel, R. Menendez, and P. Toliver, “An overlay photonic layer security approach scalable to 100 Gb/s,” IEEE Commun. Mag.46(8), 32–39 (2008).
[CrossRef]

Cvijetic, N.

Deng, Y.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security6(3), 725–736 (2011).
[CrossRef]

Effenberger, F.

Etemad, S.

S. Etemad, A. Agarwal, T. Banwell, G. D. Crescenzo, J. Jackel, R. Menendez, and P. Toliver, “An overlay photonic layer security approach scalable to 100 Gb/s,” IEEE Commun. Mag.46(8), 32–39 (2008).
[CrossRef]

Fok, M. P.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security6(3), 725–736 (2011).
[CrossRef]

Forcucci, A.

Gidding, R. P.

Hamié, A.

Harris, A.

A. Harris, D. R. Jones, K. H. Horbatuck, and A. Sierra, “A novel wavelength hopping passive optical network (WH-PON) for provision of enhanced physical security,” J. Opt. Comm. Netw.4(3), 289–295 (2012).
[CrossRef]

Horbatuck, K. H.

A. Harris, D. R. Jones, K. H. Horbatuck, and A. Sierra, “A novel wavelength hopping passive optical network (WH-PON) for provision of enhanced physical security,” J. Opt. Comm. Netw.4(3), 289–295 (2012).
[CrossRef]

Hsu, C.-H.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Hsu, D.-Z.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Hu, J.

Hugues-Salas, E.

Jackel, J.

S. Etemad, A. Agarwal, T. Banwell, G. D. Crescenzo, J. Jackel, R. Menendez, and P. Toliver, “An overlay photonic layer security approach scalable to 100 Gb/s,” IEEE Commun. Mag.46(8), 32–39 (2008).
[CrossRef]

Jaeger, M.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag.48(2), 56–65 (2010).
[CrossRef]

Jain, S.

Jones, D. R.

A. Harris, D. R. Jones, K. H. Horbatuck, and A. Sierra, “A novel wavelength hopping passive optical network (WH-PON) for provision of enhanced physical security,” J. Opt. Comm. Netw.4(3), 289–295 (2012).
[CrossRef]

Lee, S. S. W.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Li, W.-Y.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Lin, S.-H.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Lin, Y.-M.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Liu, B.

Machuca, C.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag.48(2), 56–65 (2010).
[CrossRef]

Mansoor, S.

Mapes,

Menendez, R.

S. Etemad, A. Agarwal, T. Banwell, G. D. Crescenzo, J. Jackel, R. Menendez, and P. Toliver, “An overlay photonic layer security approach scalable to 100 Gb/s,” IEEE Commun. Mag.46(8), 32–39 (2008).
[CrossRef]

O’Byrne, V.

Prucnal, P. R.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security6(3), 725–736 (2011).
[CrossRef]

Qian, D.

Shannon, C. E.

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J.28, 656–715 (1949).

Shieh, W.

Shih, J.-L.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Sierra, A.

A. Harris, D. R. Jones, K. H. Horbatuck, and A. Sierra, “A novel wavelength hopping passive optical network (WH-PON) for provision of enhanced physical security,” J. Opt. Comm. Netw.4(3), 289–295 (2012).
[CrossRef]

Szabo, A.

Tang, J. M.

Tien, P.-L.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Toliver, P.

S. Etemad, A. Agarwal, T. Banwell, G. D. Crescenzo, J. Jackel, R. Menendez, and P. Toliver, “An overlay photonic layer security approach scalable to 100 Gb/s,” IEEE Commun. Mag.46(8), 32–39 (2008).
[CrossRef]

Townsend, P. D.

Wang, T.

Wang, Z.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security6(3), 725–736 (2011).
[CrossRef]

Wei, C. C.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Wei, J. L.

Wei Guo, R.

Wosinska, L.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag.48(2), 56–65 (2010).
[CrossRef]

Xin, X.

Yixin Zhang,

Young, R. J.

Yu, J.

Yuang, M. C.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Yuanqiu Luo, R.

Zhang, L.

Zheng, X.

Zhishan Feng, A.

Bell Syst. Tech. J.

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J.28, 656–715 (1949).

IEEE Commun. Mag.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag.48(2), 56–65 (2010).
[CrossRef]

S. Etemad, A. Agarwal, T. Banwell, G. D. Crescenzo, J. Jackel, R. Menendez, and P. Toliver, “An overlay photonic layer security approach scalable to 100 Gb/s,” IEEE Commun. Mag.46(8), 32–39 (2008).
[CrossRef]

IEEE Trans. Inf. Forensics Security

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security6(3), 725–736 (2011).
[CrossRef]

J. Lightwave Technol.

J. Opt. Comm. Netw.

A. Harris, D. R. Jones, K. H. Horbatuck, and A. Sierra, “A novel wavelength hopping passive optical network (WH-PON) for provision of enhanced physical security,” J. Opt. Comm. Netw.4(3), 289–295 (2012).
[CrossRef]

Opt. Express

Photon.Technol. Lett.

H.-Y. Chen, C. C. Wei, D.-Z. Hsu, M. C. Yuang, J. Chen, Y.-M. Lin, P.-L. Tien, S. S. W. Lee, S.-H. Lin, W.-Y. Li, C.-H. Hsu, and J.-L. Shih, “A 40-Gb/s OFDM PON system based on 10-GHz EAM and 10-GHz direct-detection PIN,” Photon.Technol. Lett.24(1), 85–87 (2012).
[CrossRef]

Other

G. Cincotti, V. Sacchieri, G. Manzacca, N. Kataoka, N. Wada, N. Nakagawa, and K. Kitayama, “Physical layer security: All-optical cryptography in access networks,” in Proc. ICTON’08, paper.We.A4.2 (2008).

M. Hossen, K.-D. Kim, and Y. Park, “Synchronized latency secured MAC protocol for PON based large sensor network”, in Proc. ICACT’10, 1528–1532(2010).

L. Zhang, X. Xin, B. Liu, and X. Yin, “Physical secure enhancement in optical OFDMA-PON based on two-dimentional scrambling,” in Proc. ECOC’12, paper.P6.01(2012).

M. Christopher, “And the world's fastest supercomputer in 2012 Is - technology review,” website: http://www.technologyreview.com/view/421600/and-the-worlds-fastest-supercomputer-in-2012-is/

P. R. Prucnal, M. P. Fok, Y. Deng, and Z. Wang, “Physical layer security in fiber-optic networks using optical signal processing,” in Proc. ACP’09, China, paper.76321M–10 (2009).

G. Cincotti, N. Wada, and K. Kitayama, “Secure optical bit- and block-cipher transmission using a single multiport encoder/decoder,” in Proc. OFC’08, USA, paper.JThA93 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the proposed method for secure OFDM-PON (S/P: serial to parallel; IFFT: inverse fast Fourier transform).

Fig. 2
Fig. 2

Details of experimental setup (MZM: Mach-Zehnder modulator; PSC: power splitter/combiner).

Fig. 3
Fig. 3

(a) electrical spectrum of OFDM signal; (b) 32QAM before constellation masking, electrical b-2-b; (c) 32QAM after constellation masking, electrical b-2-b; (d) 32QAM after constellation unmasking, electrical b-2-b; (e)32QAM with wrong unmasking, electrical b-2-b.

Fig. 4
Fig. 4

The iteration sequences of {xn} 1 64 and {yn} 1 64 under slightly different tested keys (blue line: x0 = 0.54776634284971; red line: x0 = 0.54776634284972).

Fig. 5
Fig. 5

The measured BER curves for regular ONUs.

Fig. 6
Fig. 6

The measured BER of the illegal ONU.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

{ x n+1 = x n + y n + r x | mod1 y n+1 = x n +2 y n + r y | mod1 , x n [0,1), y n [0,1)
C ' k = C k e j σ k ,1kN
σ k = log(k+1) x k logN ×2π
f(q)[ q1 Q , q Q ),q=1,2,...,Q
C " k =C ' k Arg( C q )
s t = k=1 N C " k ×exp[j2π f k (n1) T s N ] = k=1 N C ' k Arg( C q ) | q[1,Q] ×exp[j2π f k (n1) T s N ]
{ r x,t+1 = [ r x,t +cos( k=1 N x k )] | mod1 r y,t+1 = [ r y,t +cos( k=1 N y k )] | mod1

Metrics