Abstract

We propose and investigate experimentally an interferometrically stable, polarization-selective pulse multiplexing scheme for direct laser amplification of picosecond pulses. The basic building block of this scheme is a Sagnac loop which allows for a straightforward scaling of the pulse-multiplexing scheme. Switching the amplifier from single-pulse amplification to burst mode increases extraction efficiency, reduces parasitic non-linearities in the gain medium and allows for higher output energies. Time-frequency analysis of the amplified output pulses demonstrates the viability of this approach.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun.88, 437–440 (1992).
    [CrossRef]
  2. R. T. Zinkstok, S. Witte, W. Hogervorst, and K. S. E. Eikema, “High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control,” Opt. Lett.30, 78–80 (2005).
    [CrossRef] [PubMed]
  3. N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, “Multimillijoule chirped parametric amplification of few-cycle pulses,” Opt. Lett.30, 567–569 (2005).
    [CrossRef] [PubMed]
  4. S. Witte, R. Zinkstok, W. Hogervorst, and K. Eikema, “Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification,” Opt. Express13, 4903–4908 (2005).
    [CrossRef] [PubMed]
  5. K. Yamakawa, M. Aoyama, Y. Akahane, K. Ogawa, K. Tsuji, A. Sugiyama, T. Harimoto, J. Kawanaka, H. Nishioka, and M. Fujita, “Ultra-broadband optical parametric chirped-pulse amplification using an Yb : LiYF4 chirped-pulse amplification pump laser,” Opt. Express15, 5018–5023 (2007).
    [CrossRef] [PubMed]
  6. N. Ishii, C. Teisset, T. Fuji, S. Kohler, K. Schmid, L. Veisz, A. Baltuska, and F. Krausz, “Seeding of an eleven femtosecond optical parametric chirped pulse amplifier and its Nd3+ picosecond pump laser from a single broadband Ti:Sapphire oscillator,” IEEE J. Sel. Top. Quantum Electron.12, 173–180 (2006).
    [CrossRef]
  7. L. Giniunas, J. Pocius, and R. Danielius, “Energy extraction improvement in picosecond amplifiers by pulse tilting,” Opt. Lett.31, 643–645 (2006).
    [CrossRef] [PubMed]
  8. S. Zhou, F. W. Wise, and D. G. Ouzounov, “Divided-pulse amplification of ultrashort pulses,” Opt. Lett.32, 871–873 (2007).
    [CrossRef] [PubMed]
  9. S. Roither, A. Verhoef, O. D. Mücke, G. Reider, A. Pugzlys, and A. Baltuska, “Sagnac-interferometer multipass-loop amplifier,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2008). CTuK4.
  10. A. E. Siegman, Lasers (University Science Books, 1986).
  11. W. Koechner, “Properties of solid-state laser materials,” in Solid-State Laser Engineering, vol. 1 of Springer Series in Optical Sciences (SpringerBerlin / Heidelberg, 2006), pp. 38–101.
  12. J. Degnan, D. Coyle, and R. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron.34, 887–899 (1998).
    [CrossRef]
  13. D. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron.29, 571–579 (1993).
    [CrossRef]
  14. W. Koechner and M. Bass, Solid State Lasers: A Graduate Text (Springer, New York Berlin Heidelberg, 2003).
  15. M. Kalashnikov, K. Osvay, I. Lachko, H. Schnnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B81, 1059–1062 (2005).
    [CrossRef]

2007

2006

N. Ishii, C. Teisset, T. Fuji, S. Kohler, K. Schmid, L. Veisz, A. Baltuska, and F. Krausz, “Seeding of an eleven femtosecond optical parametric chirped pulse amplifier and its Nd3+ picosecond pump laser from a single broadband Ti:Sapphire oscillator,” IEEE J. Sel. Top. Quantum Electron.12, 173–180 (2006).
[CrossRef]

L. Giniunas, J. Pocius, and R. Danielius, “Energy extraction improvement in picosecond amplifiers by pulse tilting,” Opt. Lett.31, 643–645 (2006).
[CrossRef] [PubMed]

2005

1998

J. Degnan, D. Coyle, and R. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron.34, 887–899 (1998).
[CrossRef]

1993

D. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron.29, 571–579 (1993).
[CrossRef]

1992

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun.88, 437–440 (1992).
[CrossRef]

Akahane, Y.

Aoyama, M.

Baltuska, A.

N. Ishii, C. Teisset, T. Fuji, S. Kohler, K. Schmid, L. Veisz, A. Baltuska, and F. Krausz, “Seeding of an eleven femtosecond optical parametric chirped pulse amplifier and its Nd3+ picosecond pump laser from a single broadband Ti:Sapphire oscillator,” IEEE J. Sel. Top. Quantum Electron.12, 173–180 (2006).
[CrossRef]

N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, “Multimillijoule chirped parametric amplification of few-cycle pulses,” Opt. Lett.30, 567–569 (2005).
[CrossRef] [PubMed]

S. Roither, A. Verhoef, O. D. Mücke, G. Reider, A. Pugzlys, and A. Baltuska, “Sagnac-interferometer multipass-loop amplifier,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2008). CTuK4.

Bass, M.

W. Koechner and M. Bass, Solid State Lasers: A Graduate Text (Springer, New York Berlin Heidelberg, 2003).

Butkus, R.

Coyle, D.

J. Degnan, D. Coyle, and R. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron.34, 887–899 (1998).
[CrossRef]

Danielius, R.

Degnan, J.

J. Degnan, D. Coyle, and R. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron.34, 887–899 (1998).
[CrossRef]

Dubietis, A.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun.88, 437–440 (1992).
[CrossRef]

Eikema, K.

Eikema, K. S. E.

Fuji, T.

N. Ishii, C. Teisset, T. Fuji, S. Kohler, K. Schmid, L. Veisz, A. Baltuska, and F. Krausz, “Seeding of an eleven femtosecond optical parametric chirped pulse amplifier and its Nd3+ picosecond pump laser from a single broadband Ti:Sapphire oscillator,” IEEE J. Sel. Top. Quantum Electron.12, 173–180 (2006).
[CrossRef]

N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, “Multimillijoule chirped parametric amplification of few-cycle pulses,” Opt. Lett.30, 567–569 (2005).
[CrossRef] [PubMed]

Fujita, M.

Giniunas, L.

Harimoto, T.

Hogervorst, W.

Ishii, N.

N. Ishii, C. Teisset, T. Fuji, S. Kohler, K. Schmid, L. Veisz, A. Baltuska, and F. Krausz, “Seeding of an eleven femtosecond optical parametric chirped pulse amplifier and its Nd3+ picosecond pump laser from a single broadband Ti:Sapphire oscillator,” IEEE J. Sel. Top. Quantum Electron.12, 173–180 (2006).
[CrossRef]

N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, “Multimillijoule chirped parametric amplification of few-cycle pulses,” Opt. Lett.30, 567–569 (2005).
[CrossRef] [PubMed]

Jonusauskas, G.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun.88, 437–440 (1992).
[CrossRef]

Kalashnikov, M.

M. Kalashnikov, K. Osvay, I. Lachko, H. Schnnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B81, 1059–1062 (2005).
[CrossRef]

Kane, D.

D. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron.29, 571–579 (1993).
[CrossRef]

Kawanaka, J.

Kay, R.

J. Degnan, D. Coyle, and R. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron.34, 887–899 (1998).
[CrossRef]

Koechner, W.

W. Koechner, “Properties of solid-state laser materials,” in Solid-State Laser Engineering, vol. 1 of Springer Series in Optical Sciences (SpringerBerlin / Heidelberg, 2006), pp. 38–101.

W. Koechner and M. Bass, Solid State Lasers: A Graduate Text (Springer, New York Berlin Heidelberg, 2003).

Kohler, S.

N. Ishii, C. Teisset, T. Fuji, S. Kohler, K. Schmid, L. Veisz, A. Baltuska, and F. Krausz, “Seeding of an eleven femtosecond optical parametric chirped pulse amplifier and its Nd3+ picosecond pump laser from a single broadband Ti:Sapphire oscillator,” IEEE J. Sel. Top. Quantum Electron.12, 173–180 (2006).
[CrossRef]

Krausz, F.

N. Ishii, C. Teisset, T. Fuji, S. Kohler, K. Schmid, L. Veisz, A. Baltuska, and F. Krausz, “Seeding of an eleven femtosecond optical parametric chirped pulse amplifier and its Nd3+ picosecond pump laser from a single broadband Ti:Sapphire oscillator,” IEEE J. Sel. Top. Quantum Electron.12, 173–180 (2006).
[CrossRef]

N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, “Multimillijoule chirped parametric amplification of few-cycle pulses,” Opt. Lett.30, 567–569 (2005).
[CrossRef] [PubMed]

Lachko, I.

M. Kalashnikov, K. Osvay, I. Lachko, H. Schnnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B81, 1059–1062 (2005).
[CrossRef]

Mücke, O. D.

S. Roither, A. Verhoef, O. D. Mücke, G. Reider, A. Pugzlys, and A. Baltuska, “Sagnac-interferometer multipass-loop amplifier,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2008). CTuK4.

Nishioka, H.

Ogawa, K.

Osvay, K.

M. Kalashnikov, K. Osvay, I. Lachko, H. Schnnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B81, 1059–1062 (2005).
[CrossRef]

Ouzounov, D. G.

Piskarskas, A.

N. Ishii, L. Turi, V. S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, “Multimillijoule chirped parametric amplification of few-cycle pulses,” Opt. Lett.30, 567–569 (2005).
[CrossRef] [PubMed]

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun.88, 437–440 (1992).
[CrossRef]

Pocius, J.

Pugzlys, A.

S. Roither, A. Verhoef, O. D. Mücke, G. Reider, A. Pugzlys, and A. Baltuska, “Sagnac-interferometer multipass-loop amplifier,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2008). CTuK4.

Reider, G.

S. Roither, A. Verhoef, O. D. Mücke, G. Reider, A. Pugzlys, and A. Baltuska, “Sagnac-interferometer multipass-loop amplifier,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2008). CTuK4.

Roither, S.

S. Roither, A. Verhoef, O. D. Mücke, G. Reider, A. Pugzlys, and A. Baltuska, “Sagnac-interferometer multipass-loop amplifier,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2008). CTuK4.

Sandner, W.

M. Kalashnikov, K. Osvay, I. Lachko, H. Schnnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B81, 1059–1062 (2005).
[CrossRef]

Schmid, K.

N. Ishii, C. Teisset, T. Fuji, S. Kohler, K. Schmid, L. Veisz, A. Baltuska, and F. Krausz, “Seeding of an eleven femtosecond optical parametric chirped pulse amplifier and its Nd3+ picosecond pump laser from a single broadband Ti:Sapphire oscillator,” IEEE J. Sel. Top. Quantum Electron.12, 173–180 (2006).
[CrossRef]

Schnnagel, H.

M. Kalashnikov, K. Osvay, I. Lachko, H. Schnnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B81, 1059–1062 (2005).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Smilgevicius, V.

Sugiyama, A.

Teisset, C.

N. Ishii, C. Teisset, T. Fuji, S. Kohler, K. Schmid, L. Veisz, A. Baltuska, and F. Krausz, “Seeding of an eleven femtosecond optical parametric chirped pulse amplifier and its Nd3+ picosecond pump laser from a single broadband Ti:Sapphire oscillator,” IEEE J. Sel. Top. Quantum Electron.12, 173–180 (2006).
[CrossRef]

Trebino, R.

D. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron.29, 571–579 (1993).
[CrossRef]

Tsuji, K.

Turi, L.

Veisz, L.

N. Ishii, C. Teisset, T. Fuji, S. Kohler, K. Schmid, L. Veisz, A. Baltuska, and F. Krausz, “Seeding of an eleven femtosecond optical parametric chirped pulse amplifier and its Nd3+ picosecond pump laser from a single broadband Ti:Sapphire oscillator,” IEEE J. Sel. Top. Quantum Electron.12, 173–180 (2006).
[CrossRef]

Veitas, G.

Verhoef, A.

S. Roither, A. Verhoef, O. D. Mücke, G. Reider, A. Pugzlys, and A. Baltuska, “Sagnac-interferometer multipass-loop amplifier,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2008). CTuK4.

Wise, F. W.

Witte, S.

Yakovlev, V. S.

Yamakawa, K.

Zhou, S.

Zinkstok, R.

Zinkstok, R. T.

Appl. Phys. B

M. Kalashnikov, K. Osvay, I. Lachko, H. Schnnagel, and W. Sandner, “Suppression of gain narrowing in multi-TW lasers with negatively and positively chirped pulse amplification,” Appl. Phys. B81, 1059–1062 (2005).
[CrossRef]

IEEE J. Quantum Electron.

J. Degnan, D. Coyle, and R. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron.34, 887–899 (1998).
[CrossRef]

D. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron.29, 571–579 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

N. Ishii, C. Teisset, T. Fuji, S. Kohler, K. Schmid, L. Veisz, A. Baltuska, and F. Krausz, “Seeding of an eleven femtosecond optical parametric chirped pulse amplifier and its Nd3+ picosecond pump laser from a single broadband Ti:Sapphire oscillator,” IEEE J. Sel. Top. Quantum Electron.12, 173–180 (2006).
[CrossRef]

Opt. Commun.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun.88, 437–440 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Other

S. Roither, A. Verhoef, O. D. Mücke, G. Reider, A. Pugzlys, and A. Baltuska, “Sagnac-interferometer multipass-loop amplifier,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2008). CTuK4.

A. E. Siegman, Lasers (University Science Books, 1986).

W. Koechner, “Properties of solid-state laser materials,” in Solid-State Laser Engineering, vol. 1 of Springer Series in Optical Sciences (SpringerBerlin / Heidelberg, 2006), pp. 38–101.

W. Koechner and M. Bass, Solid State Lasers: A Graduate Text (Springer, New York Berlin Heidelberg, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Basic building blocks of SIMPL. (a) The polarizing beam splitter (TFP) divides the incoming laser pulse into two replicas that counter propagate inside the Sagnac-loop and recombine at the TFP. Inside the loop the amplifier crystal is placed at an asymmetric position such that the two pulse replicas do not temporally overlap in the crystal during amplification. s and p indicate vertical and horizontal polarization states, respectively. (b) Double-pass configuration for isotropic laser crystals. (c) Double-pass configuration for laser crystals with intrinsic or thermally induced birefringence.

Fig. 2
Fig. 2

Scalability of the SIMPL scheme for (a) isotropic and (b) non-isotropic crystals. The basic building blocks are highlighted by dashed rectangles. (a) The Faraday rotator, in combination with the end mirror, turns horizontal into vertical polarization, and vice versa. (b) Translation stages (blue rectangles) assure temporal separation of the pulse replicas. Within the last pulse-splitting unit a half-wave plate rotates the vertical polarization state by 90° to assure horizontal polarization within the Brewster-cut crystal.

Fig. 3
Fig. 3

Results of broadband pulse amplification and recombination using a single Sagnac loop. (a) Output power as a function of the total seed power at the output. The black curve corresponds to the total output power, the red curve shows the amplification of one single arm. Inset: output beam profile at 1.35 mJ recorded with a CCD camera. (b) Spectra of seed and amplified pulses for the broadband two-copy SIMPL amplifier.

Fig. 4
Fig. 4

Four-replica, double-pass SIMPL. No Faraday rotators are needed in this configuration since the recombination can be achieved solely with half-wave plates. Mirrors shown in grey are vertically offset from the incident beam height.

Fig. 5
Fig. 5

(a) Output energy as a function of the recombined seed energy at the output and (b) spectra of recombined output (black curve) and its constituent replicas (colored curves) of a four-copy, double-pass SIMPL amplifier. Inset to panel (a): beam profile of the recombined output pulse at 322 μJ.

Fig. 6
Fig. 6

Measured SH-FROG traces for (a) case 1 (reference, see Table 1): single-pulse amplification up to 54 μJ; (b) case 2: single-pulse amplification with an output pulse energy of 185 μJ; (c) case 4: recombined output pulse from a four-copy SIMPL with an energy of 220 μJ; (d) – (f) reconstructed SH-FROG traces of the measured traces in (a) – (c), respectively. No SH-FROG traces are shown for case 3, where the crystal was damaged.

Fig. 7
Fig. 7

Frequency and time domain representation (left and right column, respectively) of amplified pulses of cases 1 [panels (a) and (d)], 2 [panels (b) and (e)] and 4 [panels (c) and (f)] (for more details on the different cases, see Table 1). Blue and green curves show measured and retrieved spectra, respectively, spectral and temporal phases are shown in red. Purple lines correspond to the differential phase.

Tables (1)

Tables Icon

Table 1 Comparison of single-pulse amplification with split-pulse amplification (SIMPL) including calculated values of the B-integral. No gain saturation was observed.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

B = 2 π λ n 2 I ( x ) d x ,
g = Δ n σ ,
G = exp ( g L ) ,
E out ( x ) = E sat ln ( 1 + ( exp ( E in E sat ) 1 ) exp ( g 0 x ) ) ,
B = 2 π n 2 λ τ 0 L E ( x ) d x ,

Metrics