Abstract

We report on a new fabrication method of producing ytterbium doped fibers by atomic layer deposition (ALD) in combination with the conventional modified chemical vapor deposition (MCVD) technique. An MCVD soot-preform with a porous layer of SiO2 is coated with layers of Yb2O3 and Al2O3 prior to sintering, using the gas-phase ALD method. An SEM/EDS material analysis study shows that the dopants successfully penetrate the full thickness of 320 µm of the soot layer. An Yb-doped fiber fabricated by this technique shows a background attenuation of 20 dB/km, a uniform longitudinal Yb-doping profile, and good laser characteristics with a slope efficiency of 80%. Furthermore, we present a comparison in terms of photodarkening between the MCVD-ALD fiber and a solution doped fiber, fabricated with the same MCVD recipe. The new MCVD-ALD fiber appears to be more photodarkening resistant.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004).
    [CrossRef] [PubMed]
  2. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
    [CrossRef]
  3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
    [CrossRef]
  4. J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibres,” Electron. Lett.23(7), 329–331 (1987).
    [CrossRef]
  5. S. Tammela, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G, 61160G-9 (2006).
    [CrossRef]
  6. J. J. Koponen, L. Petit, T. Kokki, V. Aallos, J. Paul, and H. Ihalainen, “Progress in direct nanoparticle deposition for the development of the next generation fiber lasers,” Opt. Eng.50(11), 111605 (2011).
    [CrossRef]
  7. A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids356(18–19), 848–851 (2010).
    [CrossRef]
  8. A. Dhar, M. Ch. Paul, M. Pal, A. K. Mondal, S. Sen, H. S. Maiti, and R. Sen, “Characterization of porous core layer for controlling rare earth incorporation in optical fiber,” Opt. Express14(20), 9006–9015 (2006).
    [CrossRef] [PubMed]
  9. E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Non-Cryst. Solids354(42-44), 4737–4742 (2008).
    [CrossRef]
  10. A. J. Boyland, A. S. Webb, M. P. Kalita, S. Yoo, C. A. Codemard, R. J. Standish, J. Nilsson, and J. K. Sahu, “Rare-earth doped optical fiber fabrication using novel gas phase deposition technique,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD), Optical Society of America, San Jose, CA, USA, paper CThV7 (2010).
  11. A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high power laser fibers,” in Fiber Lasers V: Technology, Systems, and Applications, Proc. SPIE6873, 687311, 687311-9 (2008).
    [CrossRef]
  12. M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett.36(9), 1557–1559 (2011).
    [CrossRef] [PubMed]
  13. C. Goodman and M. Pessa, “Atomic layer epitaxy,” J. Appl. Phys.60(3), R65–R81 (1986).
    [CrossRef]
  14. R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys.97(12), 121301 (2005).
    [CrossRef]
  15. J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater.15(18), 3507–3517 (2003).
    [CrossRef]
  16. M. Ritala and M. Leskelä, Handbook of Thin Film Materials: Deposition and Processing of Thin Films, vol. 1 (Academic Press 2002) chap. 2.
  17. L. Norin, E. Vanin, P. Soininen, and M. Putkonen, “Atomic Layer Deposition as a New Method for Rare-Earth Doping of Optical Fibers,” in Conference on Lasers and Electro-Optics (CLEO), Baltimore, Maryland, paper CTuBB5 (2007).
  18. M. Bosund, K. Mizohata, T. Hakkarainen, M. Putkonen, M. Söderlund, S. Honkanen, and H. Lipsanen, “Atomic layer deposition of ytterbium oxide using β-diketonate and ozone precursors,” Appl. Surf. Sci.256(3), 847–851 (2009).
    [CrossRef]
  19. M. J. Kim, K. Chakrabarti, J. Lee, K.-Y. Oh, and C. Lee, “Effects of ozone as an oxygen source on the properties of the Al2O3 thin films prepared by atomic layer deposition,” Mater. Chem. Phys.78(3), 733–738 (2003).
    [CrossRef]
  20. S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, A. Scheffel, and J. Kirchhof, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers,” Proc. SPIE7212, 72121B1 (2009).
  21. J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb-doped silica-based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE7195, 71950S, 71950S-15 (2009).
    [CrossRef]
  22. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express14(24), 11539–11544 (2006).
    [CrossRef] [PubMed]
  23. J. J. Montiel i Ponsoda, C. Ye, J. P. Koplow, M. J. Söderlund, J. J. Koponen, and S. Honkanen, “Analysis of temperature dependence of photodarkening in ytterbium-doped fibers,” Opt. Eng.50(11), 111610 (2011).
    [CrossRef]
  24. J. Koponen, M. Söderlund, H. J. Hoffman, D. A. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt.47(9), 1247–1256 (2008).
    [CrossRef] [PubMed]
  25. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express16(20), 15540–15545 (2008).
    [CrossRef] [PubMed]
  26. J. Koponen, M. Laurila, M. Söderlund, J. Montiel i Ponsoda, and A. Iho, “Benchmarking and measuring photodarkening in Yb doped fibers,” Proc. SPIE7195, 71950R, 71950R-14 (2009).
    [CrossRef]
  27. S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett.34(1), 109–111 (2009).
    [CrossRef] [PubMed]
  28. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett.34(8), 1285–1287 (2009).
    [CrossRef] [PubMed]

2011 (3)

J. J. Koponen, L. Petit, T. Kokki, V. Aallos, J. Paul, and H. Ihalainen, “Progress in direct nanoparticle deposition for the development of the next generation fiber lasers,” Opt. Eng.50(11), 111605 (2011).
[CrossRef]

J. J. Montiel i Ponsoda, C. Ye, J. P. Koplow, M. J. Söderlund, J. J. Koponen, and S. Honkanen, “Analysis of temperature dependence of photodarkening in ytterbium-doped fibers,” Opt. Eng.50(11), 111610 (2011).
[CrossRef]

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett.36(9), 1557–1559 (2011).
[CrossRef] [PubMed]

2010 (2)

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
[CrossRef]

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids356(18–19), 848–851 (2010).
[CrossRef]

2009 (6)

J. Koponen, M. Laurila, M. Söderlund, J. Montiel i Ponsoda, and A. Iho, “Benchmarking and measuring photodarkening in Yb doped fibers,” Proc. SPIE7195, 71950R, 71950R-14 (2009).
[CrossRef]

M. Bosund, K. Mizohata, T. Hakkarainen, M. Putkonen, M. Söderlund, S. Honkanen, and H. Lipsanen, “Atomic layer deposition of ytterbium oxide using β-diketonate and ozone precursors,” Appl. Surf. Sci.256(3), 847–851 (2009).
[CrossRef]

S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, A. Scheffel, and J. Kirchhof, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers,” Proc. SPIE7212, 72121B1 (2009).

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb-doped silica-based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE7195, 71950S, 71950S-15 (2009).
[CrossRef]

S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett.34(1), 109–111 (2009).
[CrossRef] [PubMed]

M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett.34(8), 1285–1287 (2009).
[CrossRef] [PubMed]

2008 (4)

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt.47(9), 1247–1256 (2008).
[CrossRef] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express16(20), 15540–15545 (2008).
[CrossRef] [PubMed]

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Non-Cryst. Solids354(42-44), 4737–4742 (2008).
[CrossRef]

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high power laser fibers,” in Fiber Lasers V: Technology, Systems, and Applications, Proc. SPIE6873, 687311, 687311-9 (2008).
[CrossRef]

2006 (3)

2005 (2)

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys.97(12), 121301 (2005).
[CrossRef]

2004 (1)

2003 (2)

M. J. Kim, K. Chakrabarti, J. Lee, K.-Y. Oh, and C. Lee, “Effects of ozone as an oxygen source on the properties of the Al2O3 thin films prepared by atomic layer deposition,” Mater. Chem. Phys.78(3), 733–738 (2003).
[CrossRef]

J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater.15(18), 3507–3517 (2003).
[CrossRef]

1987 (1)

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibres,” Electron. Lett.23(7), 329–331 (1987).
[CrossRef]

1986 (1)

C. Goodman and M. Pessa, “Atomic layer epitaxy,” J. Appl. Phys.60(3), R65–R81 (1986).
[CrossRef]

Aallos, V.

J. J. Koponen, L. Petit, T. Kokki, V. Aallos, J. Paul, and H. Ihalainen, “Progress in direct nanoparticle deposition for the development of the next generation fiber lasers,” Opt. Eng.50(11), 111605 (2011).
[CrossRef]

Barua, P.

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Non-Cryst. Solids354(42-44), 4737–4742 (2008).
[CrossRef]

Bosund, M.

M. Bosund, K. Mizohata, T. Hakkarainen, M. Putkonen, M. Söderlund, S. Honkanen, and H. Lipsanen, “Atomic layer deposition of ytterbium oxide using β-diketonate and ozone precursors,” Appl. Surf. Sci.256(3), 847–851 (2009).
[CrossRef]

Boyland, A. J.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids356(18–19), 848–851 (2010).
[CrossRef]

Chakrabarti, K.

M. J. Kim, K. Chakrabarti, J. Lee, K.-Y. Oh, and C. Lee, “Effects of ozone as an oxygen source on the properties of the Al2O3 thin films prepared by atomic layer deposition,” Mater. Chem. Phys.78(3), 733–738 (2003).
[CrossRef]

Clarkson, W. A.

Dhar, A.

Elam, J. W.

J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater.15(18), 3507–3517 (2003).
[CrossRef]

Engholm, M.

Eschrich, T.

George, S. M.

J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater.15(18), 3507–3517 (2003).
[CrossRef]

Goodman, C.

C. Goodman and M. Pessa, “Atomic layer epitaxy,” J. Appl. Phys.60(3), R65–R81 (1986).
[CrossRef]

Grimm, S.

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett.36(9), 1557–1559 (2011).
[CrossRef] [PubMed]

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high power laser fibers,” in Fiber Lasers V: Technology, Systems, and Applications, Proc. SPIE6873, 687311, 687311-9 (2008).
[CrossRef]

Hakkarainen, T.

M. Bosund, K. Mizohata, T. Hakkarainen, M. Putkonen, M. Söderlund, S. Honkanen, and H. Lipsanen, “Atomic layer deposition of ytterbium oxide using β-diketonate and ozone precursors,” Appl. Surf. Sci.256(3), 847–851 (2009).
[CrossRef]

Höfer, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Hoffman, H. J.

Honkanen, S.

J. J. Montiel i Ponsoda, C. Ye, J. P. Koplow, M. J. Söderlund, J. J. Koponen, and S. Honkanen, “Analysis of temperature dependence of photodarkening in ytterbium-doped fibers,” Opt. Eng.50(11), 111610 (2011).
[CrossRef]

M. Bosund, K. Mizohata, T. Hakkarainen, M. Putkonen, M. Söderlund, S. Honkanen, and H. Lipsanen, “Atomic layer deposition of ytterbium oxide using β-diketonate and ozone precursors,” Appl. Surf. Sci.256(3), 847–851 (2009).
[CrossRef]

Hotoleanu, M.

Ihalainen, H.

J. J. Koponen, L. Petit, T. Kokki, V. Aallos, J. Paul, and H. Ihalainen, “Progress in direct nanoparticle deposition for the development of the next generation fiber lasers,” Opt. Eng.50(11), 111605 (2011).
[CrossRef]

Iho, A.

J. Koponen, M. Laurila, M. Söderlund, J. Montiel i Ponsoda, and A. Iho, “Benchmarking and measuring photodarkening in Yb doped fibers,” Proc. SPIE7195, 71950R, 71950R-14 (2009).
[CrossRef]

Ikushima, A. J.

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Non-Cryst. Solids354(42-44), 4737–4742 (2008).
[CrossRef]

Jelger, P.

Jeong, Y.

Jetschke, S.

S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett.34(1), 109–111 (2009).
[CrossRef] [PubMed]

S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, A. Scheffel, and J. Kirchhof, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers,” Proc. SPIE7212, 72121B1 (2009).

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb-doped silica-based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE7195, 71950S, 71950S-15 (2009).
[CrossRef]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express16(20), 15540–15545 (2008).
[CrossRef] [PubMed]

Just, F.

Kayser, T.

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high power laser fibers,” in Fiber Lasers V: Technology, Systems, and Applications, Proc. SPIE6873, 687311, 687311-9 (2008).
[CrossRef]

Kim, M. J.

M. J. Kim, K. Chakrabarti, J. Lee, K.-Y. Oh, and C. Lee, “Effects of ozone as an oxygen source on the properties of the Al2O3 thin films prepared by atomic layer deposition,” Mater. Chem. Phys.78(3), 733–738 (2003).
[CrossRef]

Kirchhof, J.

S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, A. Scheffel, and J. Kirchhof, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers,” Proc. SPIE7212, 72121B1 (2009).

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb-doped silica-based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE7195, 71950S, 71950S-15 (2009).
[CrossRef]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express16(20), 15540–15545 (2008).
[CrossRef] [PubMed]

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high power laser fibers,” in Fiber Lasers V: Technology, Systems, and Applications, Proc. SPIE6873, 687311, 687311-9 (2008).
[CrossRef]

Kliner, D. A.

Kokki, T.

J. J. Koponen, L. Petit, T. Kokki, V. Aallos, J. Paul, and H. Ihalainen, “Progress in direct nanoparticle deposition for the development of the next generation fiber lasers,” Opt. Eng.50(11), 111605 (2011).
[CrossRef]

Koplow, J. P.

J. J. Montiel i Ponsoda, C. Ye, J. P. Koplow, M. J. Söderlund, J. J. Koponen, and S. Honkanen, “Analysis of temperature dependence of photodarkening in ytterbium-doped fibers,” Opt. Eng.50(11), 111610 (2011).
[CrossRef]

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt.47(9), 1247–1256 (2008).
[CrossRef] [PubMed]

Koponen, J.

J. Koponen, M. Laurila, M. Söderlund, J. Montiel i Ponsoda, and A. Iho, “Benchmarking and measuring photodarkening in Yb doped fibers,” Proc. SPIE7195, 71950R, 71950R-14 (2009).
[CrossRef]

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt.47(9), 1247–1256 (2008).
[CrossRef] [PubMed]

S. Tammela, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G, 61160G-9 (2006).
[CrossRef]

Koponen, J. J.

J. J. Montiel i Ponsoda, C. Ye, J. P. Koplow, M. J. Söderlund, J. J. Koponen, and S. Honkanen, “Analysis of temperature dependence of photodarkening in ytterbium-doped fibers,” Opt. Eng.50(11), 111610 (2011).
[CrossRef]

J. J. Koponen, L. Petit, T. Kokki, V. Aallos, J. Paul, and H. Ihalainen, “Progress in direct nanoparticle deposition for the development of the next generation fiber lasers,” Opt. Eng.50(11), 111605 (2011).
[CrossRef]

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express14(24), 11539–11544 (2006).
[CrossRef] [PubMed]

Krause, V.

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high power laser fibers,” in Fiber Lasers V: Technology, Systems, and Applications, Proc. SPIE6873, 687311, 687311-9 (2008).
[CrossRef]

Langner, A.

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett.36(9), 1557–1559 (2011).
[CrossRef] [PubMed]

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high power laser fibers,” in Fiber Lasers V: Technology, Systems, and Applications, Proc. SPIE6873, 687311, 687311-9 (2008).
[CrossRef]

Laurell, F.

Laurila, M.

J. Koponen, M. Laurila, M. Söderlund, J. Montiel i Ponsoda, and A. Iho, “Benchmarking and measuring photodarkening in Yb doped fibers,” Proc. SPIE7195, 71950R, 71950R-14 (2009).
[CrossRef]

Lee, C.

M. J. Kim, K. Chakrabarti, J. Lee, K.-Y. Oh, and C. Lee, “Effects of ozone as an oxygen source on the properties of the Al2O3 thin films prepared by atomic layer deposition,” Mater. Chem. Phys.78(3), 733–738 (2003).
[CrossRef]

Lee, J.

M. J. Kim, K. Chakrabarti, J. Lee, K.-Y. Oh, and C. Lee, “Effects of ozone as an oxygen source on the properties of the Al2O3 thin films prepared by atomic layer deposition,” Mater. Chem. Phys.78(3), 733–738 (2003).
[CrossRef]

Leich, M.

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett.36(9), 1557–1559 (2011).
[CrossRef] [PubMed]

S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, A. Scheffel, and J. Kirchhof, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers,” Proc. SPIE7212, 72121B1 (2009).

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb-doped silica-based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE7195, 71950S, 71950S-15 (2009).
[CrossRef]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express16(20), 15540–15545 (2008).
[CrossRef] [PubMed]

Liem, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Limpert, J.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Lipsanen, H.

M. Bosund, K. Mizohata, T. Hakkarainen, M. Putkonen, M. Söderlund, S. Honkanen, and H. Lipsanen, “Atomic layer deposition of ytterbium oxide using β-diketonate and ozone precursors,” Appl. Surf. Sci.256(3), 847–851 (2009).
[CrossRef]

Maiti, H. S.

Mardilovich, P. P.

J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater.15(18), 3507–3517 (2003).
[CrossRef]

Mizohata, K.

M. Bosund, K. Mizohata, T. Hakkarainen, M. Putkonen, M. Söderlund, S. Honkanen, and H. Lipsanen, “Atomic layer deposition of ytterbium oxide using β-diketonate and ozone precursors,” Appl. Surf. Sci.256(3), 847–851 (2009).
[CrossRef]

Mondal, A. K.

Montiel i Ponsoda, J.

J. Koponen, M. Laurila, M. Söderlund, J. Montiel i Ponsoda, and A. Iho, “Benchmarking and measuring photodarkening in Yb doped fibers,” Proc. SPIE7195, 71950R, 71950R-14 (2009).
[CrossRef]

Montiel i Ponsoda, J. J.

J. J. Montiel i Ponsoda, C. Ye, J. P. Koplow, M. J. Söderlund, J. J. Koponen, and S. Honkanen, “Analysis of temperature dependence of photodarkening in ytterbium-doped fibers,” Opt. Eng.50(11), 111610 (2011).
[CrossRef]

Nilsson, J.

Nolte, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Norin, L.

Oh, K.-Y.

M. J. Kim, K. Chakrabarti, J. Lee, K.-Y. Oh, and C. Lee, “Effects of ozone as an oxygen source on the properties of the Al2O3 thin films prepared by atomic layer deposition,” Mater. Chem. Phys.78(3), 733–738 (2003).
[CrossRef]

Pal, M.

Paul, J.

J. J. Koponen, L. Petit, T. Kokki, V. Aallos, J. Paul, and H. Ihalainen, “Progress in direct nanoparticle deposition for the development of the next generation fiber lasers,” Opt. Eng.50(11), 111605 (2011).
[CrossRef]

Paul, M. Ch.

Payne, D. N.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids356(18–19), 848–851 (2010).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004).
[CrossRef] [PubMed]

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibres,” Electron. Lett.23(7), 329–331 (1987).
[CrossRef]

Pessa, M.

C. Goodman and M. Pessa, “Atomic layer epitaxy,” J. Appl. Phys.60(3), R65–R81 (1986).
[CrossRef]

Petit, L.

J. J. Koponen, L. Petit, T. Kokki, V. Aallos, J. Paul, and H. Ihalainen, “Progress in direct nanoparticle deposition for the development of the next generation fiber lasers,” Opt. Eng.50(11), 111605 (2011).
[CrossRef]

Philippov, V.

S. Tammela, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G, 61160G-9 (2006).
[CrossRef]

Poole, S. B.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibres,” Electron. Lett.23(7), 329–331 (1987).
[CrossRef]

Putkonen, M.

M. Bosund, K. Mizohata, T. Hakkarainen, M. Putkonen, M. Söderlund, S. Honkanen, and H. Lipsanen, “Atomic layer deposition of ytterbium oxide using β-diketonate and ozone precursors,” Appl. Surf. Sci.256(3), 847–851 (2009).
[CrossRef]

Puurunen, R. L.

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys.97(12), 121301 (2005).
[CrossRef]

Rehmann, G.

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high power laser fibers,” in Fiber Lasers V: Technology, Systems, and Applications, Proc. SPIE6873, 687311, 687311-9 (2008).
[CrossRef]

Reichel, V.

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb-doped silica-based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE7195, 71950S, 71950S-15 (2009).
[CrossRef]

S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, A. Scheffel, and J. Kirchhof, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers,” Proc. SPIE7212, 72121B1 (2009).

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high power laser fibers,” in Fiber Lasers V: Technology, Systems, and Applications, Proc. SPIE6873, 687311, 687311-9 (2008).
[CrossRef]

Richardson, D. J.

Röpke, U.

Röser, F.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Routkevitch, D.

J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater.15(18), 3507–3517 (2003).
[CrossRef]

Sahu, J. K.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids356(18–19), 848–851 (2010).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004).
[CrossRef] [PubMed]

Saito, K.

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Non-Cryst. Solids354(42-44), 4737–4742 (2008).
[CrossRef]

Scheffel, A.

S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, A. Scheffel, and J. Kirchhof, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers,” Proc. SPIE7212, 72121B1 (2009).

Schötz, G.

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett.36(9), 1557–1559 (2011).
[CrossRef] [PubMed]

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high power laser fibers,” in Fiber Lasers V: Technology, Systems, and Applications, Proc. SPIE6873, 687311, 687311-9 (2008).
[CrossRef]

Schreiber, T.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Schwuchow, A.

S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, A. Scheffel, and J. Kirchhof, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers,” Proc. SPIE7212, 72121B1 (2009).

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb-doped silica-based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE7195, 71950S, 71950S-15 (2009).
[CrossRef]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express16(20), 15540–15545 (2008).
[CrossRef] [PubMed]

Sekiya, E. H.

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Non-Cryst. Solids354(42-44), 4737–4742 (2008).
[CrossRef]

Sen, R.

Sen, S.

Söderlund, M.

M. Bosund, K. Mizohata, T. Hakkarainen, M. Putkonen, M. Söderlund, S. Honkanen, and H. Lipsanen, “Atomic layer deposition of ytterbium oxide using β-diketonate and ozone precursors,” Appl. Surf. Sci.256(3), 847–851 (2009).
[CrossRef]

J. Koponen, M. Laurila, M. Söderlund, J. Montiel i Ponsoda, and A. Iho, “Benchmarking and measuring photodarkening in Yb doped fibers,” Proc. SPIE7195, 71950R, 71950R-14 (2009).
[CrossRef]

J. Koponen, M. Söderlund, H. J. Hoffman, D. A. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt.47(9), 1247–1256 (2008).
[CrossRef] [PubMed]

S. Tammela, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G, 61160G-9 (2006).
[CrossRef]

Söderlund, M. J.

J. J. Montiel i Ponsoda, C. Ye, J. P. Koplow, M. J. Söderlund, J. J. Koponen, and S. Honkanen, “Analysis of temperature dependence of photodarkening in ytterbium-doped fibers,” Opt. Eng.50(11), 111610 (2011).
[CrossRef]

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express14(24), 11539–11544 (2006).
[CrossRef] [PubMed]

Standish, R. J.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids356(18–19), 848–851 (2010).
[CrossRef]

Stenius, P.

S. Tammela, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G, 61160G-9 (2006).
[CrossRef]

Such, M.

M. Leich, F. Just, A. Langner, M. Such, G. Schötz, T. Eschrich, and S. Grimm, “Highly efficient Yb-doped silica fibers prepared by powder sinter technology,” Opt. Lett.36(9), 1557–1559 (2011).
[CrossRef] [PubMed]

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high power laser fibers,” in Fiber Lasers V: Technology, Systems, and Applications, Proc. SPIE6873, 687311, 687311-9 (2008).
[CrossRef]

Tammela, S.

S. Tammela, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G, 61160G-9 (2006).
[CrossRef]

Tammela, S. K.

Townsend, J. E.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibres,” Electron. Lett.23(7), 329–331 (1987).
[CrossRef]

Tünnermann, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Unger, S.

S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, A. Scheffel, and J. Kirchhof, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers,” Proc. SPIE7212, 72121B1 (2009).

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb-doped silica-based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE7195, 71950S, 71950S-15 (2009).
[CrossRef]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express16(20), 15540–15545 (2008).
[CrossRef] [PubMed]

Webb, A. S.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids356(18–19), 848–851 (2010).
[CrossRef]

Ye, C.

J. J. Montiel i Ponsoda, C. Ye, J. P. Koplow, M. J. Söderlund, J. J. Koponen, and S. Honkanen, “Analysis of temperature dependence of photodarkening in ytterbium-doped fibers,” Opt. Eng.50(11), 111610 (2011).
[CrossRef]

Yoo, S.

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids356(18–19), 848–851 (2010).
[CrossRef]

Zellmer, H.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Surf. Sci. (1)

M. Bosund, K. Mizohata, T. Hakkarainen, M. Putkonen, M. Söderlund, S. Honkanen, and H. Lipsanen, “Atomic layer deposition of ytterbium oxide using β-diketonate and ozone precursors,” Appl. Surf. Sci.256(3), 847–851 (2009).
[CrossRef]

Chem. Mater. (1)

J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, “Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition,” Chem. Mater.15(18), 3507–3517 (2003).
[CrossRef]

Electron. Lett. (1)

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibres,” Electron. Lett.23(7), 329–331 (1987).
[CrossRef]

J. Appl. Phys. (2)

C. Goodman and M. Pessa, “Atomic layer epitaxy,” J. Appl. Phys.60(3), R65–R81 (1986).
[CrossRef]

R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys.97(12), 121301 (2005).
[CrossRef]

J. Non-Cryst. Solids (2)

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids356(18–19), 848–851 (2010).
[CrossRef]

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Non-Cryst. Solids354(42-44), 4737–4742 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B38(9), S681–S693 (2005).
[CrossRef]

Mater. Chem. Phys. (1)

M. J. Kim, K. Chakrabarti, J. Lee, K.-Y. Oh, and C. Lee, “Effects of ozone as an oxygen source on the properties of the Al2O3 thin films prepared by atomic layer deposition,” Mater. Chem. Phys.78(3), 733–738 (2003).
[CrossRef]

Opt. Eng. (2)

J. J. Montiel i Ponsoda, C. Ye, J. P. Koplow, M. J. Söderlund, J. J. Koponen, and S. Honkanen, “Analysis of temperature dependence of photodarkening in ytterbium-doped fibers,” Opt. Eng.50(11), 111610 (2011).
[CrossRef]

J. J. Koponen, L. Petit, T. Kokki, V. Aallos, J. Paul, and H. Ihalainen, “Progress in direct nanoparticle deposition for the development of the next generation fiber lasers,” Opt. Eng.50(11), 111605 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (5)

A. Langner, G. Schötz, M. Such, T. Kayser, V. Reichel, S. Grimm, J. Kirchhof, V. Krause, and G. Rehmann, “A new material for high power laser fibers,” in Fiber Lasers V: Technology, Systems, and Applications, Proc. SPIE6873, 687311, 687311-9 (2008).
[CrossRef]

S. Tammela, M. Söderlund, J. Koponen, V. Philippov, and P. Stenius, “The potential of direct nanoparticle deposition for the next generation of optical fibers,” Proc. SPIE6116, 61160G, 61160G-9 (2006).
[CrossRef]

J. Koponen, M. Laurila, M. Söderlund, J. Montiel i Ponsoda, and A. Iho, “Benchmarking and measuring photodarkening in Yb doped fibers,” Proc. SPIE7195, 71950R, 71950R-14 (2009).
[CrossRef]

S. Unger, A. Schwuchow, S. Jetschke, V. Reichel, M. Leich, A. Scheffel, and J. Kirchhof, “Influence of aluminum-phosphorus codoping on optical properties of ytterbium-doped laser fibers,” Proc. SPIE7212, 72121B1 (2009).

J. Kirchhof, S. Unger, S. Jetschke, A. Schwuchow, M. Leich, and V. Reichel, “Yb-doped silica-based laser fibers: correlation of photodarkening kinetics and related optical properties with the glass composition,” Proc. SPIE7195, 71950S, 71950S-15 (2009).
[CrossRef]

Other (3)

M. Ritala and M. Leskelä, Handbook of Thin Film Materials: Deposition and Processing of Thin Films, vol. 1 (Academic Press 2002) chap. 2.

L. Norin, E. Vanin, P. Soininen, and M. Putkonen, “Atomic Layer Deposition as a New Method for Rare-Earth Doping of Optical Fibers,” in Conference on Lasers and Electro-Optics (CLEO), Baltimore, Maryland, paper CTuBB5 (2007).

A. J. Boyland, A. S. Webb, M. P. Kalita, S. Yoo, C. A. Codemard, R. J. Standish, J. Nilsson, and J. K. Sahu, “Rare-earth doped optical fiber fabrication using novel gas phase deposition technique,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD), Optical Society of America, San Jose, CA, USA, paper CThV7 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

ALD reaction cycle for deposition of Yb2O3 and Al2O3 in a porous silica soot.

Fig. 2
Fig. 2

(a) An analysis of the radial distribution of dopants in a porous soot measured by an SEM/EDS. The soot piece was cut out from the position corresponding to the outlet of the gases in the reactor during the ALD doping. The average concentrations of Yb and Al are 0.15 and 1.51 at%. (b) Normalized ratio Yb/Al with respect to the average.

Fig. 3
Fig. 3

Refractive index profiles (RIPs) at different positions along the preform. Refractive index change is calculated as an increase with respect to the refractive index of silica. (a) Preform A (b) Preforms B and C.

Fig. 4
Fig. 4

(a) Background attenuation spectrum. (b) Yb and Al concentrations along the fiber length.

Fig. 5
Fig. 5

(a) Photodarkening experiments at 10 W of pump power (70% population inversion) characterized by the absorption coefficient change (ΔαPD) at 600 nm for different levels of the Al content. (b) ΔαPD after 40 hours of pumping versus the Al concentration expressed in atomic%.

Fig. 6
Fig. 6

Photodarkening benchmarking between an ALD-doped fiber and an MCVD-solution doping fiber with similar doping. [Yb*] is tuned to be approximately the same. Photodarkening measurements were fitted by a stretched exponential.

Fig. 7
Fig. 7

(a) Fiber laser configuration (b) Laser output power as a function of the absorbed pump power. Inset: laser spectrum for a laser output power of 6.5 W.

Tables (1)

Tables Icon

Table 1 Fiber parameters and measurement conditions of the photodarkening benchmarking

Metrics