Abstract

Highly luminescent Cd–free Zn doped CuInS2 nanocrystals (ZCIS NCs) were synthesized, and their properties were evaluated using X-ray diffraction, Raman, UV, and photoluminescence. The crystal structure of the ZCIS NCs was similar to the zinc blende, and the lattice constant decreased with increasing Zn concentration. By incorporation of Zn, the emission wavelength was tuned from 536 to 637nm with concomitant enhancement of the quantum yield up to 45%. A white light emitting diodes, integrating dual ZCIS NCs (λem = 567, and 617nm) and a 460nm InGaN LED, exhibited a high color rendering index of 84.1 with a warm color temperature of 4256.2K. The CIE-1931 chromaticity coordinates were slightly shifted from (0.3626, 0.3378) at 20mA to (0.3480, 0.3206) at 50mA.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Colvin, M. Schlamp, and A. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
    [CrossRef]
  2. Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
    [CrossRef] [PubMed]
  3. Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells,” Nano Lett.8(9), 2982–2987 (2008).
    [CrossRef] [PubMed]
  4. W. C. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science281(5385), 2016–2018 (1998).
    [CrossRef] [PubMed]
  5. M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature429(6992), 642–646 (2004).
    [CrossRef] [PubMed]
  6. H. Chen, C. Hsu, and H. Hong, “InGaN–CdSe–ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett.18(1), 193–195 (2006).
    [CrossRef]
  7. S. Nizamoglu, T. Ozel, E. Sari, and H. Demir, “White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology18(6), 065709 (2007).
    [CrossRef]
  8. S. Nizamoglu, G. Zengin, and H. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett.92(3), 031102 (2008).
    [CrossRef]
  9. H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins,” Nanotechnology19(14), 145202 (2008).
    [CrossRef] [PubMed]
  10. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlight,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
    [CrossRef]
  11. S. Castro, S. Bailey, R. Raffaelle, K. Banger, and A. Hepp, “Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor,” J. Phys. Chem. B108(33), 12429–12435 (2004).
    [CrossRef]
  12. L. Li, T. Daou, I. Texier, T. Chi, N. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals:cadmium-free quantum dots for in vivo imaging,” Chem. Mater.21(12), 2422–2429 (2009).
    [CrossRef]
  13. M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, and H. Maeda, “Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect,” J. Chem. Phys.129(13), 134709 (2008).
    [CrossRef] [PubMed]
  14. H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater.18(14), 3330–3335 (2006).
    [CrossRef]
  15. J. Zhang, R. Xie, and W. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitter,” Chem. Mater.23(14), 3357–3361 (2011).
    [CrossRef]
  16. J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters,” Chem. Commun. (Camb.)47(22), 6422–6424 (2011).
    [CrossRef] [PubMed]
  17. H. Kim, B. Kwon, M. Suh, D. Kang, Y. Kim, and D. Jeon, “Degradation characteristics of red light-emitting CuInS2/ZnS quantum dots as a wavelength converter for LEDs,” Electrochem. Solid-State Lett.14(10), K55–K57 (2011).
    [CrossRef]
  18. W. Chung, H. Jung, C. Lee, S. Park, J. Kim, and S. Kim, “Synthesis and application of non-toxic ZnCuInS2/ZnS nanocrystals for white LED by hybridization with conjugated polymer,” J. Electrochem. Soc.158(12), H1218–H1220 (2011).
    [CrossRef]
  19. T. Riedel, “Raman spectroscopy for the analysis of thin CuInS2 films” (Ph. D. thesis, Technical University of Berlin, 2002).
  20. J. Garcia, Characterisation of CuInS2 films for solar cell applications by raman spectroscopy (Ph. D. thesis, University of Barcelona, 2002).
  21. D. Lee and J. Kim, “Characterization of sprayed CuInS2 films by XRD and raman spectroscopy measurements,” Thin Solid Films518(22), 6537–6541 (2010).
    [CrossRef]
  22. Y. Yu, M. Hyun, S. Nam, D. Lee, B. O, K.-S. Lee, P. Y. Yu, and Y. D. Choi, “Resonant Raman scattering measurements of strains in ZnS epilayers grown on GaP,” J. Appl. Phys.91(11), 9429–9431 (2002).
    [CrossRef]

2011

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

J. Zhang, R. Xie, and W. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitter,” Chem. Mater.23(14), 3357–3361 (2011).
[CrossRef]

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters,” Chem. Commun. (Camb.)47(22), 6422–6424 (2011).
[CrossRef] [PubMed]

H. Kim, B. Kwon, M. Suh, D. Kang, Y. Kim, and D. Jeon, “Degradation characteristics of red light-emitting CuInS2/ZnS quantum dots as a wavelength converter for LEDs,” Electrochem. Solid-State Lett.14(10), K55–K57 (2011).
[CrossRef]

W. Chung, H. Jung, C. Lee, S. Park, J. Kim, and S. Kim, “Synthesis and application of non-toxic ZnCuInS2/ZnS nanocrystals for white LED by hybridization with conjugated polymer,” J. Electrochem. Soc.158(12), H1218–H1220 (2011).
[CrossRef]

2010

D. Lee and J. Kim, “Characterization of sprayed CuInS2 films by XRD and raman spectroscopy measurements,” Thin Solid Films518(22), 6537–6541 (2010).
[CrossRef]

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlight,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef]

2009

L. Li, T. Daou, I. Texier, T. Chi, N. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals:cadmium-free quantum dots for in vivo imaging,” Chem. Mater.21(12), 2422–2429 (2009).
[CrossRef]

2008

M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, and H. Maeda, “Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect,” J. Chem. Phys.129(13), 134709 (2008).
[CrossRef] [PubMed]

Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells,” Nano Lett.8(9), 2982–2987 (2008).
[CrossRef] [PubMed]

S. Nizamoglu, G. Zengin, and H. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett.92(3), 031102 (2008).
[CrossRef]

H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins,” Nanotechnology19(14), 145202 (2008).
[CrossRef] [PubMed]

2007

S. Nizamoglu, T. Ozel, E. Sari, and H. Demir, “White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology18(6), 065709 (2007).
[CrossRef]

2006

H. Chen, C. Hsu, and H. Hong, “InGaN–CdSe–ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett.18(1), 193–195 (2006).
[CrossRef]

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater.18(14), 3330–3335 (2006).
[CrossRef]

2004

S. Castro, S. Bailey, R. Raffaelle, K. Banger, and A. Hepp, “Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor,” J. Phys. Chem. B108(33), 12429–12435 (2004).
[CrossRef]

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature429(6992), 642–646 (2004).
[CrossRef] [PubMed]

2002

Y. Yu, M. Hyun, S. Nam, D. Lee, B. O, K.-S. Lee, P. Y. Yu, and Y. D. Choi, “Resonant Raman scattering measurements of strains in ZnS epilayers grown on GaP,” J. Appl. Phys.91(11), 9429–9431 (2002).
[CrossRef]

1998

W. C. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

1994

V. Colvin, M. Schlamp, and A. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

Achermann, M.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature429(6992), 642–646 (2004).
[CrossRef] [PubMed]

Agrawal, R.

Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells,” Nano Lett.8(9), 2982–2987 (2008).
[CrossRef] [PubMed]

Alivisatos, A.

V. Colvin, M. Schlamp, and A. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

Bailey, S.

S. Castro, S. Bailey, R. Raffaelle, K. Banger, and A. Hepp, “Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor,” J. Phys. Chem. B108(33), 12429–12435 (2004).
[CrossRef]

Banger, K.

S. Castro, S. Bailey, R. Raffaelle, K. Banger, and A. Hepp, “Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor,” J. Phys. Chem. B108(33), 12429–12435 (2004).
[CrossRef]

Birkmire, R. W.

Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells,” Nano Lett.8(9), 2982–2987 (2008).
[CrossRef] [PubMed]

Castro, S.

S. Castro, S. Bailey, R. Raffaelle, K. Banger, and A. Hepp, “Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor,” J. Phys. Chem. B108(33), 12429–12435 (2004).
[CrossRef]

Chan, W. C.

W. C. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

Chen, H.

H. Chen, C. Hsu, and H. Hong, “InGaN–CdSe–ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett.18(1), 193–195 (2006).
[CrossRef]

Chi, T.

L. Li, T. Daou, I. Texier, T. Chi, N. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals:cadmium-free quantum dots for in vivo imaging,” Chem. Mater.21(12), 2422–2429 (2009).
[CrossRef]

Cho, Y. H.

H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins,” Nanotechnology19(14), 145202 (2008).
[CrossRef] [PubMed]

Choi, Y. D.

Y. Yu, M. Hyun, S. Nam, D. Lee, B. O, K.-S. Lee, P. Y. Yu, and Y. D. Choi, “Resonant Raman scattering measurements of strains in ZnS epilayers grown on GaP,” J. Appl. Phys.91(11), 9429–9431 (2002).
[CrossRef]

Chung, W.

W. Chung, H. Jung, C. Lee, S. Park, J. Kim, and S. Kim, “Synthesis and application of non-toxic ZnCuInS2/ZnS nanocrystals for white LED by hybridization with conjugated polymer,” J. Electrochem. Soc.158(12), H1218–H1220 (2011).
[CrossRef]

Colvin, V.

V. Colvin, M. Schlamp, and A. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

Daou, T.

L. Li, T. Daou, I. Texier, T. Chi, N. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals:cadmium-free quantum dots for in vivo imaging,” Chem. Mater.21(12), 2422–2429 (2009).
[CrossRef]

Dellas, N.

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

Demir, H.

S. Nizamoglu, G. Zengin, and H. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett.92(3), 031102 (2008).
[CrossRef]

S. Nizamoglu, T. Ozel, E. Sari, and H. Demir, “White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology18(6), 065709 (2007).
[CrossRef]

Feng, J.

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters,” Chem. Commun. (Camb.)47(22), 6422–6424 (2011).
[CrossRef] [PubMed]

Guo, Q.

Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells,” Nano Lett.8(9), 2982–2987 (2008).
[CrossRef] [PubMed]

Hahm, J. I.

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

Hepp, A.

S. Castro, S. Bailey, R. Raffaelle, K. Banger, and A. Hepp, “Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor,” J. Phys. Chem. B108(33), 12429–12435 (2004).
[CrossRef]

Hillhouse, H. W.

Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells,” Nano Lett.8(9), 2982–2987 (2008).
[CrossRef] [PubMed]

Hong, C. H.

H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins,” Nanotechnology19(14), 145202 (2008).
[CrossRef] [PubMed]

Hong, H.

H. Chen, C. Hsu, and H. Hong, “InGaN–CdSe–ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett.18(1), 193–195 (2006).
[CrossRef]

Hsu, C.

H. Chen, C. Hsu, and H. Hong, “InGaN–CdSe–ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett.18(1), 193–195 (2006).
[CrossRef]

Hyun, M.

Y. Yu, M. Hyun, S. Nam, D. Lee, B. O, K.-S. Lee, P. Y. Yu, and Y. D. Choi, “Resonant Raman scattering measurements of strains in ZnS epilayers grown on GaP,” J. Appl. Phys.91(11), 9429–9431 (2002).
[CrossRef]

Jang, E.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlight,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef]

Jang, H.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlight,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef]

Jeon, D.

H. Kim, B. Kwon, M. Suh, D. Kang, Y. Kim, and D. Jeon, “Degradation characteristics of red light-emitting CuInS2/ZnS quantum dots as a wavelength converter for LEDs,” Electrochem. Solid-State Lett.14(10), K55–K57 (2011).
[CrossRef]

Jun, S.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlight,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef]

Jung, H.

W. Chung, H. Jung, C. Lee, S. Park, J. Kim, and S. Kim, “Synthesis and application of non-toxic ZnCuInS2/ZnS nanocrystals for white LED by hybridization with conjugated polymer,” J. Electrochem. Soc.158(12), H1218–H1220 (2011).
[CrossRef]

Kang, D.

H. Kim, B. Kwon, M. Suh, D. Kang, Y. Kim, and D. Jeon, “Degradation characteristics of red light-emitting CuInS2/ZnS quantum dots as a wavelength converter for LEDs,” Electrochem. Solid-State Lett.14(10), K55–K57 (2011).
[CrossRef]

Kar, M.

Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells,” Nano Lett.8(9), 2982–2987 (2008).
[CrossRef] [PubMed]

Kato, W.

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater.18(14), 3330–3335 (2006).
[CrossRef]

Kim, B.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlight,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef]

Kim, H.

H. Kim, B. Kwon, M. Suh, D. Kang, Y. Kim, and D. Jeon, “Degradation characteristics of red light-emitting CuInS2/ZnS quantum dots as a wavelength converter for LEDs,” Electrochem. Solid-State Lett.14(10), K55–K57 (2011).
[CrossRef]

Kim, J.

W. Chung, H. Jung, C. Lee, S. Park, J. Kim, and S. Kim, “Synthesis and application of non-toxic ZnCuInS2/ZnS nanocrystals for white LED by hybridization with conjugated polymer,” J. Electrochem. Soc.158(12), H1218–H1220 (2011).
[CrossRef]

D. Lee and J. Kim, “Characterization of sprayed CuInS2 films by XRD and raman spectroscopy measurements,” Thin Solid Films518(22), 6537–6541 (2010).
[CrossRef]

Kim, S.

W. Chung, H. Jung, C. Lee, S. Park, J. Kim, and S. Kim, “Synthesis and application of non-toxic ZnCuInS2/ZnS nanocrystals for white LED by hybridization with conjugated polymer,” J. Electrochem. Soc.158(12), H1218–H1220 (2011).
[CrossRef]

Kim, S. J.

Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells,” Nano Lett.8(9), 2982–2987 (2008).
[CrossRef] [PubMed]

Kim, Y.

H. Kim, B. Kwon, M. Suh, D. Kang, Y. Kim, and D. Jeon, “Degradation characteristics of red light-emitting CuInS2/ZnS quantum dots as a wavelength converter for LEDs,” Electrochem. Solid-State Lett.14(10), K55–K57 (2011).
[CrossRef]

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlight,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef]

Klimov, V. I.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature429(6992), 642–646 (2004).
[CrossRef] [PubMed]

Koleske, D. D.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature429(6992), 642–646 (2004).
[CrossRef] [PubMed]

Kos, S.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature429(6992), 642–646 (2004).
[CrossRef] [PubMed]

Kwon, B.

H. Kim, B. Kwon, M. Suh, D. Kang, Y. Kim, and D. Jeon, “Degradation characteristics of red light-emitting CuInS2/ZnS quantum dots as a wavelength converter for LEDs,” Electrochem. Solid-State Lett.14(10), K55–K57 (2011).
[CrossRef]

Lee, C.

W. Chung, H. Jung, C. Lee, S. Park, J. Kim, and S. Kim, “Synthesis and application of non-toxic ZnCuInS2/ZnS nanocrystals for white LED by hybridization with conjugated polymer,” J. Electrochem. Soc.158(12), H1218–H1220 (2011).
[CrossRef]

Lee, D.

D. Lee and J. Kim, “Characterization of sprayed CuInS2 films by XRD and raman spectroscopy measurements,” Thin Solid Films518(22), 6537–6541 (2010).
[CrossRef]

Y. Yu, M. Hyun, S. Nam, D. Lee, B. O, K.-S. Lee, P. Y. Yu, and Y. D. Choi, “Resonant Raman scattering measurements of strains in ZnS epilayers grown on GaP,” J. Appl. Phys.91(11), 9429–9431 (2002).
[CrossRef]

Lee, K. S.

H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins,” Nanotechnology19(14), 145202 (2008).
[CrossRef] [PubMed]

Lee, K.-S.

Y. Yu, M. Hyun, S. Nam, D. Lee, B. O, K.-S. Lee, P. Y. Yu, and Y. D. Choi, “Resonant Raman scattering measurements of strains in ZnS epilayers grown on GaP,” J. Appl. Phys.91(11), 9429–9431 (2002).
[CrossRef]

Li, L.

L. Li, T. Daou, I. Texier, T. Chi, N. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals:cadmium-free quantum dots for in vivo imaging,” Chem. Mater.21(12), 2422–2429 (2009).
[CrossRef]

Liem, N.

L. Li, T. Daou, I. Texier, T. Chi, N. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals:cadmium-free quantum dots for in vivo imaging,” Chem. Mater.21(12), 2422–2429 (2009).
[CrossRef]

Lim, J.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlight,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef]

Liu, J.

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

Maeda, H.

M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, and H. Maeda, “Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect,” J. Chem. Phys.129(13), 134709 (2008).
[CrossRef] [PubMed]

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater.18(14), 3330–3335 (2006).
[CrossRef]

Matsuo, S.

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater.18(14), 3330–3335 (2006).
[CrossRef]

Miyazaki, M.

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater.18(14), 3330–3335 (2006).
[CrossRef]

Mohney, S. E.

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

Nakamura, H.

M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, and H. Maeda, “Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect,” J. Chem. Phys.129(13), 134709 (2008).
[CrossRef] [PubMed]

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater.18(14), 3330–3335 (2006).
[CrossRef]

Nam, S.

Y. Yu, M. Hyun, S. Nam, D. Lee, B. O, K.-S. Lee, P. Y. Yu, and Y. D. Choi, “Resonant Raman scattering measurements of strains in ZnS epilayers grown on GaP,” J. Appl. Phys.91(11), 9429–9431 (2002).
[CrossRef]

Nie, S.

W. C. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

Nizamoglu, S.

S. Nizamoglu, G. Zengin, and H. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett.92(3), 031102 (2008).
[CrossRef]

S. Nizamoglu, T. Ozel, E. Sari, and H. Demir, “White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology18(6), 065709 (2007).
[CrossRef]

Nose, K.

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater.18(14), 3330–3335 (2006).
[CrossRef]

O, B.

Y. Yu, M. Hyun, S. Nam, D. Lee, B. O, K.-S. Lee, P. Y. Yu, and Y. D. Choi, “Resonant Raman scattering measurements of strains in ZnS epilayers grown on GaP,” J. Appl. Phys.91(11), 9429–9431 (2002).
[CrossRef]

Omata, T.

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater.18(14), 3330–3335 (2006).
[CrossRef]

Ozel, T.

S. Nizamoglu, T. Ozel, E. Sari, and H. Demir, “White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology18(6), 065709 (2007).
[CrossRef]

Park, S.

W. Chung, H. Jung, C. Lee, S. Park, J. Kim, and S. Kim, “Synthesis and application of non-toxic ZnCuInS2/ZnS nanocrystals for white LED by hybridization with conjugated polymer,” J. Electrochem. Soc.158(12), H1218–H1220 (2011).
[CrossRef]

Petruska, M. A.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature429(6992), 642–646 (2004).
[CrossRef] [PubMed]

Pickering, S.

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

Raffaelle, R.

S. Castro, S. Bailey, R. Raffaelle, K. Banger, and A. Hepp, “Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor,” J. Phys. Chem. B108(33), 12429–12435 (2004).
[CrossRef]

Reiss, P.

L. Li, T. Daou, I. Texier, T. Chi, N. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals:cadmium-free quantum dots for in vivo imaging,” Chem. Mater.21(12), 2422–2429 (2009).
[CrossRef]

Ryu, J. H.

H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins,” Nanotechnology19(14), 145202 (2008).
[CrossRef] [PubMed]

Sari, E.

S. Nizamoglu, T. Ozel, E. Sari, and H. Demir, “White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology18(6), 065709 (2007).
[CrossRef]

Schlamp, M.

V. Colvin, M. Schlamp, and A. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

Shafarman, W. N.

Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells,” Nano Lett.8(9), 2982–2987 (2008).
[CrossRef] [PubMed]

Smith, D. L.

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature429(6992), 642–646 (2004).
[CrossRef] [PubMed]

Stach, E. A.

Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells,” Nano Lett.8(9), 2982–2987 (2008).
[CrossRef] [PubMed]

Su, H.

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

Suh, M.

H. Kim, B. Kwon, M. Suh, D. Kang, Y. Kim, and D. Jeon, “Degradation characteristics of red light-emitting CuInS2/ZnS quantum dots as a wavelength converter for LEDs,” Electrochem. Solid-State Lett.14(10), K55–K57 (2011).
[CrossRef]

Sun, M.

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters,” Chem. Commun. (Camb.)47(22), 6422–6424 (2011).
[CrossRef] [PubMed]

Tajiri, Y.

M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, and H. Maeda, “Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect,” J. Chem. Phys.129(13), 134709 (2008).
[CrossRef] [PubMed]

Texier, I.

L. Li, T. Daou, I. Texier, T. Chi, N. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals:cadmium-free quantum dots for in vivo imaging,” Chem. Mater.21(12), 2422–2429 (2009).
[CrossRef]

Uehara, M.

M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, and H. Maeda, “Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect,” J. Chem. Phys.129(13), 134709 (2008).
[CrossRef] [PubMed]

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater.18(14), 3330–3335 (2006).
[CrossRef]

Wang, H.

H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins,” Nanotechnology19(14), 145202 (2008).
[CrossRef] [PubMed]

Wang, J.

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

Wang, Y.

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

Watanabe, K.

M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, and H. Maeda, “Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect,” J. Chem. Phys.129(13), 134709 (2008).
[CrossRef] [PubMed]

Xie, C.

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

Xie, R.

J. Zhang, R. Xie, and W. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitter,” Chem. Mater.23(14), 3357–3361 (2011).
[CrossRef]

Xu, J.

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

Yang, F.

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters,” Chem. Commun. (Camb.)47(22), 6422–6424 (2011).
[CrossRef] [PubMed]

Yang, W.

J. Zhang, R. Xie, and W. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitter,” Chem. Mater.23(14), 3357–3361 (2011).
[CrossRef]

Yang, X.

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters,” Chem. Commun. (Camb.)47(22), 6422–6424 (2011).
[CrossRef] [PubMed]

Yu, P. Y.

Y. Yu, M. Hyun, S. Nam, D. Lee, B. O, K.-S. Lee, P. Y. Yu, and Y. D. Choi, “Resonant Raman scattering measurements of strains in ZnS epilayers grown on GaP,” J. Appl. Phys.91(11), 9429–9431 (2002).
[CrossRef]

Yu, W. W.

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

Yu, Y.

Y. Yu, M. Hyun, S. Nam, D. Lee, B. O, K.-S. Lee, P. Y. Yu, and Y. D. Choi, “Resonant Raman scattering measurements of strains in ZnS epilayers grown on GaP,” J. Appl. Phys.91(11), 9429–9431 (2002).
[CrossRef]

Zengin, G.

S. Nizamoglu, G. Zengin, and H. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett.92(3), 031102 (2008).
[CrossRef]

Zhang, J.

J. Zhang, R. Xie, and W. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitter,” Chem. Mater.23(14), 3357–3361 (2011).
[CrossRef]

Zhang, Y.

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlight,” Adv. Mater. (Deerfield Beach Fla.)22(28), 3076–3080 (2010).
[CrossRef]

Appl. Phys. Lett.

S. Nizamoglu, G. Zengin, and H. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett.92(3), 031102 (2008).
[CrossRef]

Chem. Commun. (Camb.)

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters,” Chem. Commun. (Camb.)47(22), 6422–6424 (2011).
[CrossRef] [PubMed]

Chem. Mater.

L. Li, T. Daou, I. Texier, T. Chi, N. Liem, and P. Reiss, “Highly luminescent CuInS2/ZnS core/shell nanocrystals:cadmium-free quantum dots for in vivo imaging,” Chem. Mater.21(12), 2422–2429 (2009).
[CrossRef]

H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Matsuo, M. Miyazaki, and H. Maeda, “Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system,” Chem. Mater.18(14), 3330–3335 (2006).
[CrossRef]

J. Zhang, R. Xie, and W. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitter,” Chem. Mater.23(14), 3357–3361 (2011).
[CrossRef]

Electrochem. Solid-State Lett.

H. Kim, B. Kwon, M. Suh, D. Kang, Y. Kim, and D. Jeon, “Degradation characteristics of red light-emitting CuInS2/ZnS quantum dots as a wavelength converter for LEDs,” Electrochem. Solid-State Lett.14(10), K55–K57 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Chen, C. Hsu, and H. Hong, “InGaN–CdSe–ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett.18(1), 193–195 (2006).
[CrossRef]

J. Appl. Phys.

Y. Yu, M. Hyun, S. Nam, D. Lee, B. O, K.-S. Lee, P. Y. Yu, and Y. D. Choi, “Resonant Raman scattering measurements of strains in ZnS epilayers grown on GaP,” J. Appl. Phys.91(11), 9429–9431 (2002).
[CrossRef]

J. Chem. Phys.

M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, and H. Maeda, “Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect,” J. Chem. Phys.129(13), 134709 (2008).
[CrossRef] [PubMed]

J. Electrochem. Soc.

W. Chung, H. Jung, C. Lee, S. Park, J. Kim, and S. Kim, “Synthesis and application of non-toxic ZnCuInS2/ZnS nanocrystals for white LED by hybridization with conjugated polymer,” J. Electrochem. Soc.158(12), H1218–H1220 (2011).
[CrossRef]

J. Phys. Chem. B

S. Castro, S. Bailey, R. Raffaelle, K. Banger, and A. Hepp, “Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor,” J. Phys. Chem. B108(33), 12429–12435 (2004).
[CrossRef]

Nano Lett.

Y. Zhang, C. Xie, H. Su, J. Liu, S. Pickering, Y. Wang, W. W. Yu, J. Wang, Y. Wang, J. I. Hahm, N. Dellas, S. E. Mohney, and J. Xu, “Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes,” Nano Lett.11(2), 329–332 (2011).
[CrossRef] [PubMed]

Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, and H. W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells,” Nano Lett.8(9), 2982–2987 (2008).
[CrossRef] [PubMed]

Nanotechnology

S. Nizamoglu, T. Ozel, E. Sari, and H. Demir, “White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnology18(6), 065709 (2007).
[CrossRef]

H. Wang, K. S. Lee, J. H. Ryu, C. H. Hong, and Y. H. Cho, “White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins,” Nanotechnology19(14), 145202 (2008).
[CrossRef] [PubMed]

Nature

V. Colvin, M. Schlamp, and A. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer,” Nature370(6488), 354–357 (1994).
[CrossRef]

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature429(6992), 642–646 (2004).
[CrossRef] [PubMed]

Science

W. C. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

Thin Solid Films

D. Lee and J. Kim, “Characterization of sprayed CuInS2 films by XRD and raman spectroscopy measurements,” Thin Solid Films518(22), 6537–6541 (2010).
[CrossRef]

Other

T. Riedel, “Raman spectroscopy for the analysis of thin CuInS2 films” (Ph. D. thesis, Technical University of Berlin, 2002).

J. Garcia, Characterisation of CuInS2 films for solar cell applications by raman spectroscopy (Ph. D. thesis, University of Barcelona, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The Powder X-ray diffraction patterns of ZnCuInS nanocrystals with different Cu( = In):Zn ratios.

Fig. 2
Fig. 2

HR-TEM image of ZCIS NCs with different Cu( = In):Zn ratios. (a) 0.2, (b) 0.6, and (c) 1.0. (insets: size distribution of ZCIS NCs from DLS)

Fig. 3
Fig. 3

Raman scattering of ZCIS nanocrystals with different Cu( = In):Zn ratios.

Fig. 4
Fig. 4

(a) Absorption and (b) emission spectra (λex = 460nm) of ZnCuInS nanocrystals with different Cu( = In):Zn ratios.

Fig. 5
Fig. 5

Emission spectra of fabricated white LED using an integrating sphere. (a) 460nm InGaN LED pumped with single yellow ZnCuInS nanocrystals, and (b) dual yellow/red ZnCuInS nanocrystals.

Metrics