Abstract

This work reports how the process of three-dimensional multi-photon direct laser writing (mpDLW) is affected when there is a small mismatch in refractive index between the material being patterned and the medium in which the focusing objective is immersed. Suspended-line microstructures were fabricated by mpDLW in the cross-linkable epoxide SU-8 as a function of focus depth and average incident power. It is found that even a small refractive index contrast of Δn = + 0.08 causes significant variation in feature width and height throughout the depth of the material. In particular, both the width and height of features can either increase or decrease with depth, depending upon how much the average incident laser power exceeds the threshold for writing. Vectorial diffraction theory is used to obtain insight into the origin of the effect and how to compensate for it. We demonstrate that varying the average focused power is a practical means for controlling the variation in feature size with focal depth.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science296(5570), 1106–1109 (2002).
    [CrossRef] [PubMed]
  2. H. Misawa and S. Juodkazis, 3D Laser Microfabrication: Principles and Applications (Wiley-VCH, Weinheim, 2006).
  3. A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
    [CrossRef]
  4. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. (Deerfield Beach Fla.)18(3), 265–269 (2006).
    [CrossRef]
  5. G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett.31(18), 2783–2785 (2006).
    [CrossRef] [PubMed]
  6. Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt.7(11), 655–659 (2005).
    [CrossRef]
  7. N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, “Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass,” Opt. Express15(19), 12395–12408 (2007).
    [CrossRef] [PubMed]
  8. F. Luo, J. Song, X. Hu, H. Sun, G. Lin, H. Pan, Y. Cheng, L. Liu, J. Qiu, Q. Zhao, and Z. Xu, “Femtosecond laser-induced inverted microstructures inside glasses by tuning refractive index of objective’s immersion liquid,” Opt. Lett.36(11), 2125–2127 (2011).
    [CrossRef] [PubMed]
  9. S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: The effect of tube length,” Opt. Commun.259(1), 204–211 (2006).
    [CrossRef]
  10. M. J. Booth and T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc.200(1), 68–74 (2000).
    [CrossRef] [PubMed]
  11. I. Escobar, G. Saavedra, M. Martínez-Corral, and J. Lancis, “Reduction of the spherical aberration effect in high-numerical-aperture optical scanning instruments,” J. Opt. Soc. Am. A23(12), 3150–3155 (2006).
    [CrossRef] [PubMed]
  12. C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process.79(8), 2027–2031 (2004).
    [CrossRef]
  13. S. H. Park, T. W. Lim, D.-Y. Yang, H. J. Kong, J.-Y. Kim, and K.-S. Lee, “Direct laser patterning on opaque substrate in two-photon polymerization,” Macromol. Res.14(2), 245–250 (2006).
    [CrossRef]
  14. T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express19(12), 11451–11456 (2011).
    [CrossRef] [PubMed]
  15. A. del Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng.17(6), R81–R95 (2007).
    [CrossRef]
  16. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89(2), 024106 (2006).
    [CrossRef]
  17. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
    [CrossRef] [PubMed]
  18. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
    [CrossRef]
  19. S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
    [CrossRef] [PubMed]
  20. A. Tal, Y.-S. Chen, H. E. Williams, R. C. Rumpf, and S. M. Kuebler, “Fabrication and characterization of three-dimensional copper metallodielectric photonic crystals,” Opt. Express15(26), 18283–18293 (2007).
    [CrossRef] [PubMed]
  21. S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, and B. J. Nelson, “Magnetic helical micromachines: fabrication, controlled swimming, and cargo trasnport,” Adv. Mater. (Deerfield Beach Fla.)24(6), 811–816 (2012).
    [CrossRef]
  22. K. Venkatakrishnan, S. Jariwala, and B. Tan, “Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate,” Opt. Express17(4), 2756–2762 (2009).
    [CrossRef] [PubMed]
  23. H. E. Williams, D. J. Freppon, S. M. Kuebler, R. C. Rumpf, and M. A. Melino, “Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8,” Opt. Express19(23), 22910–22922 (2011).
    [CrossRef] [PubMed]
  24. G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, and B. J. Schwartz, “Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures,” Opt. Lett.23(22), 1745–1747 (1998).
    [CrossRef] [PubMed]
  25. E. S. Wu, J. H. Strickler, W. R. Harrell, and W. W. Webb, “Two-photon lithography for microelectronic application,” SPIE1674, 776–782 (1992).
    [CrossRef]
  26. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A12(2), 325–332 (1995).
    [CrossRef]
  27. P. Török and P. Varga, “Electromagnetic diffraction of light focused through a stratified medium,” Appl. Opt.36(11), 2305–2312 (1997).
    [CrossRef] [PubMed]
  28. B. Šantić, “Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation,” Thin Solid Films518(14), 3619–3624 (2010).
    [CrossRef]
  29. H. B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80(20), 3673–3675 (2002).
    [CrossRef]
  30. S. Nakanishi, H. B. Sun, and S. Kawata, “Elasticity of two-photon-fabricated nano-wires,” Proc. SPIE 6645, 664514–1 - 664514–9 (2007).
  31. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett.28(5), 301–303 (2003).
    [CrossRef] [PubMed]

2012 (1)

S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, and B. J. Nelson, “Magnetic helical micromachines: fabrication, controlled swimming, and cargo trasnport,” Adv. Mater. (Deerfield Beach Fla.)24(6), 811–816 (2012).
[CrossRef]

2011 (4)

2010 (1)

B. Šantić, “Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation,” Thin Solid Films518(14), 3619–3624 (2010).
[CrossRef]

2009 (1)

2007 (3)

2006 (6)

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89(2), 024106 (2006).
[CrossRef]

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: The effect of tube length,” Opt. Commun.259(1), 204–211 (2006).
[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. (Deerfield Beach Fla.)18(3), 265–269 (2006).
[CrossRef]

S. H. Park, T. W. Lim, D.-Y. Yang, H. J. Kong, J.-Y. Kim, and K.-S. Lee, “Direct laser patterning on opaque substrate in two-photon polymerization,” Macromol. Res.14(2), 245–250 (2006).
[CrossRef]

G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett.31(18), 2783–2785 (2006).
[CrossRef] [PubMed]

I. Escobar, G. Saavedra, M. Martínez-Corral, and J. Lancis, “Reduction of the spherical aberration effect in high-numerical-aperture optical scanning instruments,” J. Opt. Soc. Am. A23(12), 3150–3155 (2006).
[CrossRef] [PubMed]

2005 (2)

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt.7(11), 655–659 (2005).
[CrossRef]

2004 (2)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process.79(8), 2027–2031 (2004).
[CrossRef]

2003 (2)

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
[CrossRef]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett.28(5), 301–303 (2003).
[CrossRef] [PubMed]

2002 (2)

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science296(5570), 1106–1109 (2002).
[CrossRef] [PubMed]

H. B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80(20), 3673–3675 (2002).
[CrossRef]

2000 (1)

M. J. Booth and T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc.200(1), 68–74 (2000).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

1995 (1)

1992 (1)

E. S. Wu, J. H. Strickler, W. R. Harrell, and W. W. Webb, “Two-photon lithography for microelectronic application,” SPIE1674, 776–782 (1992).
[CrossRef]

Audouard, E.

Beck, T.

Booker, G. R.

Booth, M. J.

M. J. Booth and T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc.200(1), 68–74 (2000).
[CrossRef] [PubMed]

Braun, K. L.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science296(5570), 1106–1109 (2002).
[CrossRef] [PubMed]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Cammack, J. K.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science296(5570), 1106–1109 (2002).
[CrossRef] [PubMed]

Chang, T.-W.

C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process.79(8), 2027–2031 (2004).
[CrossRef]

Chen, Y.-S.

Cheng, Y.

Chichkov, B. N.

Cronauer, C.

del Campo, A.

A. del Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng.17(6), R81–R95 (2007).
[CrossRef]

Deubel, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. (Deerfield Beach Fla.)18(3), 265–269 (2006).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Doan, V.

Domann, G.

Egbert, A.

Escobar, I.

Franco-Obregón, A.

S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, and B. J. Nelson, “Magnetic helical micromachines: fabrication, controlled swimming, and cargo trasnport,” Adv. Mater. (Deerfield Beach Fla.)24(6), 811–816 (2012).
[CrossRef]

Freppon, D. J.

Fröhlich, L.

Furlani, E. P.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Golestanian, R.

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: The effect of tube length,” Opt. Commun.259(1), 204–211 (2006).
[CrossRef]

Gong, Q.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt.7(11), 655–659 (2005).
[CrossRef]

Greiner, C.

A. del Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng.17(6), R81–R95 (2007).
[CrossRef]

Grossmann, T.

Gu, M.

Harrell, W. R.

E. S. Wu, J. H. Strickler, W. R. Harrell, and W. W. Webb, “Two-photon lithography for microelectronic application,” SPIE1674, 776–782 (1992).
[CrossRef]

Hauser, M.

Houbertz, R.

Hu, X.

Huot, N.

Jariwala, S.

Jarutis, V.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89(2), 024106 (2006).
[CrossRef]

Jiang, H.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt.7(11), 655–659 (2005).
[CrossRef]

John, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. (Deerfield Beach Fla.)18(3), 265–269 (2006).
[CrossRef]

Juodkazis, S.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89(2), 024106 (2006).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
[CrossRef]

Kalt, H.

Kawata, S.

H. B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80(20), 3673–3675 (2002).
[CrossRef]

Khalesifard, H. R.

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: The effect of tube length,” Opt. Commun.259(1), 204–211 (2006).
[CrossRef]

Kim, J.-Y.

S. H. Park, T. W. Lim, D.-Y. Yang, H. J. Kong, J.-Y. Kim, and K.-S. Lee, “Direct laser patterning on opaque substrate in two-photon polymerization,” Macromol. Res.14(2), 245–250 (2006).
[CrossRef]

Kim, K.-T.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Kong, H. J.

S. H. Park, T. W. Lim, D.-Y. Yang, H. J. Kong, J.-Y. Kim, and K.-S. Lee, “Direct laser patterning on opaque substrate in two-photon polymerization,” Macromol. Res.14(2), 245–250 (2006).
[CrossRef]

Krawczyk, K. K.

S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, and B. J. Nelson, “Magnetic helical micromachines: fabrication, controlled swimming, and cargo trasnport,” Adv. Mater. (Deerfield Beach Fla.)24(6), 811–816 (2012).
[CrossRef]

Kuebler, S. M.

Laczik, Z.

Lancis, J.

Lee, C.-H.

C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process.79(8), 2027–2031 (2004).
[CrossRef]

Lee, K.-L.

C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process.79(8), 2027–2031 (2004).
[CrossRef]

Lee, K.-S.

S. H. Park, T. W. Lim, D.-Y. Yang, H. J. Kong, J.-Y. Kim, and K.-S. Lee, “Direct laser patterning on opaque substrate in two-photon polymerization,” Macromol. Res.14(2), 245–250 (2006).
[CrossRef]

Lim, T. W.

S. H. Park, T. W. Lim, D.-Y. Yang, H. J. Kong, J.-Y. Kim, and K.-S. Lee, “Direct laser patterning on opaque substrate in two-photon polymerization,” Macromol. Res.14(2), 245–250 (2006).
[CrossRef]

Lin, G.

Lin, J.-Y.

C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process.79(8), 2027–2031 (2004).
[CrossRef]

Liu, L.

Liu, Y.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt.7(11), 655–659 (2005).
[CrossRef]

Luo, F.

Mappes, T.

Marcinkevicius, A.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
[CrossRef]

Marder, S. R.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science296(5570), 1106–1109 (2002).
[CrossRef] [PubMed]

Martínez-Corral, M.

Matsuo, S.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
[CrossRef]

Mauclair, C.

Melino, M. A.

Mermillod-Blondin, A.

Misawa, H.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89(2), 024106 (2006).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
[CrossRef]

Miwa, M.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
[CrossRef]

Nelson, B. J.

S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, and B. J. Nelson, “Magnetic helical micromachines: fabrication, controlled swimming, and cargo trasnport,” Adv. Mater. (Deerfield Beach Fla.)24(6), 811–816 (2012).
[CrossRef]

Ober, C. K.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science296(5570), 1106–1109 (2002).
[CrossRef] [PubMed]

Ostendorf, A.

Ozin, G. A.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. (Deerfield Beach Fla.)18(3), 265–269 (2006).
[CrossRef]

Pan, H.

Park, S. H.

S. H. Park, T. W. Lim, D.-Y. Yang, H. J. Kong, J.-Y. Kim, and K.-S. Lee, “Direct laser patterning on opaque substrate in two-photon polymerization,” Macromol. Res.14(2), 245–250 (2006).
[CrossRef]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Pérez-Willard, F.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. (Deerfield Beach Fla.)18(3), 265–269 (2006).
[CrossRef]

Perry, J. W.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science296(5570), 1106–1109 (2002).
[CrossRef] [PubMed]

Popall, M.

Prasad, P. N.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Qiu, F.

S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, and B. J. Nelson, “Magnetic helical micromachines: fabrication, controlled swimming, and cargo trasnport,” Adv. Mater. (Deerfield Beach Fla.)24(6), 811–816 (2012).
[CrossRef]

Qiu, J.

Reihani, S. N. S.

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: The effect of tube length,” Opt. Commun.259(1), 204–211 (2006).
[CrossRef]

Rumpf, R. C.

Saavedra, G.

Šantic, B.

B. Šantić, “Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation,” Thin Solid Films518(14), 3619–3624 (2010).
[CrossRef]

Schleede, S.

Schulz, J.

Schwartz, B. J.

Seet, K. K.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89(2), 024106 (2006).
[CrossRef]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Serbin, J.

Shukla, S.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Song, J.

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Stoian, R.

Strickler, J. H.

E. S. Wu, J. H. Strickler, W. R. Harrell, and W. W. Webb, “Two-photon lithography for microelectronic application,” SPIE1674, 776–782 (1992).
[CrossRef]

Sun, H.

Sun, H. B.

H. B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80(20), 3673–3675 (2002).
[CrossRef]

Sun, Q.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt.7(11), 655–659 (2005).
[CrossRef]

Swihart, M. T.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Tal, A.

Tan, B.

Tanaka, T.

H. B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80(20), 3673–3675 (2002).
[CrossRef]

Thiel, M.

Török, P.

Tottori, S.

S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, and B. J. Nelson, “Magnetic helical micromachines: fabrication, controlled swimming, and cargo trasnport,” Adv. Mater. (Deerfield Beach Fla.)24(6), 811–816 (2012).
[CrossRef]

Urbas, A.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Varga, P.

Venkatakrishnan, K.

Vidal, X.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

von Freymann, G.

T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express19(12), 11451–11456 (2011).
[CrossRef] [PubMed]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. (Deerfield Beach Fla.)18(3), 265–269 (2006).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Vrijen, R.

Wang, J.

C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process.79(8), 2027–2031 (2004).
[CrossRef]

Webb, W. W.

E. S. Wu, J. H. Strickler, W. R. Harrell, and W. W. Webb, “Two-photon lithography for microelectronic application,” SPIE1674, 776–782 (1992).
[CrossRef]

Wegener, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. (Deerfield Beach Fla.)18(3), 265–269 (2006).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Williams, H. E.

Wilson, T.

M. J. Booth and T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc.200(1), 68–74 (2000).
[CrossRef] [PubMed]

Witzgall, G.

Wong, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. (Deerfield Beach Fla.)18(3), 265–269 (2006).
[CrossRef]

Wu, E. S.

E. S. Wu, J. H. Strickler, W. R. Harrell, and W. W. Webb, “Two-photon lithography for microelectronic application,” SPIE1674, 776–782 (1992).
[CrossRef]

Xu, Z.

Yablonovitch, E.

Yang, D.-Y.

S. H. Park, T. W. Lim, D.-Y. Yang, H. J. Kong, J.-Y. Kim, and K.-S. Lee, “Direct laser patterning on opaque substrate in two-photon polymerization,” Macromol. Res.14(2), 245–250 (2006).
[CrossRef]

Yang, H.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt.7(11), 655–659 (2005).
[CrossRef]

Yoon, Y.-K.

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Yu, T.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science296(5570), 1106–1109 (2002).
[CrossRef] [PubMed]

Zhang, L.

S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, and B. J. Nelson, “Magnetic helical micromachines: fabrication, controlled swimming, and cargo trasnport,” Adv. Mater. (Deerfield Beach Fla.)24(6), 811–816 (2012).
[CrossRef]

Zhao, Q.

Zhou, G.

Zhou, W.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science296(5570), 1106–1109 (2002).
[CrossRef] [PubMed]

Zhou, Y.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt.7(11), 655–659 (2005).
[CrossRef]

ACS Nano (1)

S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, and B. J. Nelson, “Magnetic helical micromachines: fabrication, controlled swimming, and cargo trasnport,” Adv. Mater. (Deerfield Beach Fla.)24(6), 811–816 (2012).
[CrossRef]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. (Deerfield Beach Fla.)18(3), 265–269 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89(2), 024106 (2006).
[CrossRef]

H. B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80(20), 3673–3675 (2002).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process.79(8), 2027–2031 (2004).
[CrossRef]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003).
[CrossRef]

J. Micromech. Microeng. (1)

A. del Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng.17(6), R81–R95 (2007).
[CrossRef]

J. Microsc. (1)

M. J. Booth and T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc.200(1), 68–74 (2000).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt.7(11), 655–659 (2005).
[CrossRef]

J. Opt. Soc. Am. A (2)

Macromol. Res. (1)

S. H. Park, T. W. Lim, D.-Y. Yang, H. J. Kong, J.-Y. Kim, and K.-S. Lee, “Direct laser patterning on opaque substrate in two-photon polymerization,” Macromol. Res.14(2), 245–250 (2006).
[CrossRef]

Nanotechnology (1)

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005).
[CrossRef]

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: The effect of tube length,” Opt. Commun.259(1), 204–211 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Science (1)

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science296(5570), 1106–1109 (2002).
[CrossRef] [PubMed]

SPIE (1)

E. S. Wu, J. H. Strickler, W. R. Harrell, and W. W. Webb, “Two-photon lithography for microelectronic application,” SPIE1674, 776–782 (1992).
[CrossRef]

Thin Solid Films (1)

B. Šantić, “Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation,” Thin Solid Films518(14), 3619–3624 (2010).
[CrossRef]

Other (2)

S. Nakanishi, H. B. Sun, and S. Kawata, “Elasticity of two-photon-fabricated nano-wires,” Proc. SPIE 6645, 664514–1 - 664514–9 (2007).

H. Misawa and S. Juodkazis, 3D Laser Microfabrication: Principles and Applications (Wiley-VCH, Weinheim, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics