Abstract

We report on the generation of 17.6W of visible radiation at 650nm using four-wave-mixing in an endlessly single-mode silica fiber. The conversion efficiency was as high as ~30%. This high efficiency could be obtained by exploiting the natural absorption of silica for the mid-infrared radiation >2.5µm. In a separate experiment 1.6W of mid-IR radiation at 2570nm were generated simultaneously with 14.4W at 672nm. These power levels of picosecond red radiation are among the highest reported so far for a diffraction limited beam quality in this wavelength region.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett.89(12), 121124 (2006).
    [CrossRef]
  2. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol.9(4), 545–562 (1998).
    [CrossRef] [PubMed]
  3. M. Seiter and M. W. Sigrist, “Trace-gas sensor based on mid-IR difference-frequency generation in PPLN with saturated output power,” Infrared Phys. Technol.41(5), 259–269 (2000).
    [CrossRef]
  4. S. M. Shepard, “Introduction to active thermography for non-destructive evaluation,” Anti-Corrosion Methods and Materials44(4), 236–239 (1997).
    [CrossRef]
  5. S. Kim, P. Klimecky, J. B. Jeffries, F. L. Terry, and R. K. Hanson, “In situ measurements of HCl during plasma etching of poly-silicon using a diode laser absorption sensor,” Meas. Sci. Technol.14(9), 1662–1670 (2003).
    [CrossRef]
  6. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
    [CrossRef]
  7. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol.9(4), 545–562 (1998).
    [CrossRef] [PubMed]
  8. F. J. Duarte, “Organic dye lasers: brief history and recent developments,” Opt. Photon. News14(10), 20–25 (2003).
    [CrossRef]
  9. C. Lindström, R. D. Burnham, D. R. Scifres, T. L. Paoli, and W. Streifer, “One watt CW visible single-quantum-well lasers,” Electron. Lett.19(3), 80–81 (1983).
    [CrossRef]
  10. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
    [CrossRef] [PubMed]
  11. B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater.4(6), 797–810 (1995).
    [CrossRef]
  12. D. G. Lancaster, D. Richter, R. F. Curl, F. K. Tittel, L. Goldberg, and J. Koplow, “High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy,” Opt. Lett.24(23), 1744–1746 (1999).
    [CrossRef] [PubMed]
  13. M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys.8(10), 1151–1161 (2007).
    [CrossRef]
  14. P. T. Rakich, Y. Fink, and M. Soljacić, “Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers,” Opt. Lett.33(15), 1690–1692 (2008).
    [CrossRef] [PubMed]
  15. D. G. Lancaster, “Efficient Nd:YAG pumped mid-IR laser based on cascaded KTP and ZGP optical parametric oscillators and a ZGP parametric amplifier,” Opt. Commun.282(2), 272–275 (2009).
    [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).
  17. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett.34(22), 3499–3501 (2009).
    [CrossRef] [PubMed]
  18. L. Lavoute, J. C. Knight, P. Dupriez, and W. J. Wadsworth, “High power red and near-IR generation using four wave mixing in all integrated fibre laser systems,” Opt. Express18(15), 16193–16205 (2010).
    [CrossRef] [PubMed]
  19. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20(4), 4484–4493 (2012).
    [CrossRef] [PubMed]
  20. A. Steinmetz, F. Jansen, F. Stutzki, R. Lehneis, J. Limpert, and A. Tünnermann, “Sub-5-ps, multimegawatt peak-power pulses from a fiber-amplified and optically compressed passively Q-switched microchip laser,” Opt. Lett.37(13), 2550–2552 (2012).
    [CrossRef] [PubMed]
  21. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011).
    [CrossRef] [PubMed]

2012 (2)

2011 (1)

2010 (1)

2009 (3)

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett.34(22), 3499–3501 (2009).
[CrossRef] [PubMed]

D. G. Lancaster, “Efficient Nd:YAG pumped mid-IR laser based on cascaded KTP and ZGP optical parametric oscillators and a ZGP parametric amplifier,” Opt. Commun.282(2), 272–275 (2009).
[CrossRef]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

2008 (1)

2007 (2)

M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys.8(10), 1151–1161 (2007).
[CrossRef]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

2006 (1)

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett.89(12), 121124 (2006).
[CrossRef]

2003 (2)

F. J. Duarte, “Organic dye lasers: brief history and recent developments,” Opt. Photon. News14(10), 20–25 (2003).
[CrossRef]

S. Kim, P. Klimecky, J. B. Jeffries, F. L. Terry, and R. K. Hanson, “In situ measurements of HCl during plasma etching of poly-silicon using a diode laser absorption sensor,” Meas. Sci. Technol.14(9), 1662–1670 (2003).
[CrossRef]

2000 (1)

M. Seiter and M. W. Sigrist, “Trace-gas sensor based on mid-IR difference-frequency generation in PPLN with saturated output power,” Infrared Phys. Technol.41(5), 259–269 (2000).
[CrossRef]

1999 (1)

1998 (2)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol.9(4), 545–562 (1998).
[CrossRef] [PubMed]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol.9(4), 545–562 (1998).
[CrossRef] [PubMed]

1997 (1)

S. M. Shepard, “Introduction to active thermography for non-destructive evaluation,” Anti-Corrosion Methods and Materials44(4), 236–239 (1997).
[CrossRef]

1995 (1)

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater.4(6), 797–810 (1995).
[CrossRef]

1983 (1)

C. Lindström, R. D. Burnham, D. R. Scifres, T. L. Paoli, and W. Streifer, “One watt CW visible single-quantum-well lasers,” Electron. Lett.19(3), 80–81 (1983).
[CrossRef]

Allen, M. G.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol.9(4), 545–562 (1998).
[CrossRef] [PubMed]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol.9(4), 545–562 (1998).
[CrossRef] [PubMed]

Baumgartl, M.

Burnham, R. D.

C. Lindström, R. D. Burnham, D. R. Scifres, T. L. Paoli, and W. Streifer, “One watt CW visible single-quantum-well lasers,” Electron. Lett.19(3), 80–81 (1983).
[CrossRef]

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Chemnitz, M.

Curl, R. F.

Dietzek, B.

Duarte, F. J.

F. J. Duarte, “Organic dye lasers: brief history and recent developments,” Opt. Photon. News14(10), 20–25 (2003).
[CrossRef]

Dupriez, P.

Eichhorn, M.

M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys.8(10), 1151–1161 (2007).
[CrossRef]

Eidam, T.

Fink, Y.

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Goldberg, L.

Hanson, R. K.

S. Kim, P. Klimecky, J. B. Jeffries, F. L. Terry, and R. K. Hanson, “In situ measurements of HCl during plasma etching of poly-silicon using a diode laser absorption sensor,” Meas. Sci. Technol.14(9), 1662–1670 (2003).
[CrossRef]

Hirth, A.

M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys.8(10), 1151–1161 (2007).
[CrossRef]

Izumitani, T.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater.4(6), 797–810 (1995).
[CrossRef]

Jansen, F.

Jauregui, C.

Jeffries, J. B.

S. Kim, P. Klimecky, J. B. Jeffries, F. L. Terry, and R. K. Hanson, “In situ measurements of HCl during plasma etching of poly-silicon using a diode laser absorption sensor,” Meas. Sci. Technol.14(9), 1662–1670 (2003).
[CrossRef]

Kieleck, C.

M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys.8(10), 1151–1161 (2007).
[CrossRef]

Kim, S.

S. Kim, P. Klimecky, J. B. Jeffries, F. L. Terry, and R. K. Hanson, “In situ measurements of HCl during plasma etching of poly-silicon using a diode laser absorption sensor,” Meas. Sci. Technol.14(9), 1662–1670 (2003).
[CrossRef]

Klimecky, P.

S. Kim, P. Klimecky, J. B. Jeffries, F. L. Terry, and R. K. Hanson, “In situ measurements of HCl during plasma etching of poly-silicon using a diode laser absorption sensor,” Meas. Sci. Technol.14(9), 1662–1670 (2003).
[CrossRef]

Knight, J. C.

Koplow, J.

Lancaster, D. G.

Lavoute, L.

Lehneis, R.

Limpert, J.

Lindström, C.

C. Lindström, R. D. Burnham, D. R. Scifres, T. L. Paoli, and W. Streifer, “One watt CW visible single-quantum-well lasers,” Electron. Lett.19(3), 80–81 (1983).
[CrossRef]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Mathies, R. A.

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett.89(12), 121124 (2006).
[CrossRef]

Meyer, T.

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Nodop, D.

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Paoli, T. L.

C. Lindström, R. D. Burnham, D. R. Scifres, T. L. Paoli, and W. Streifer, “One watt CW visible single-quantum-well lasers,” Electron. Lett.19(3), 80–81 (1983).
[CrossRef]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Peng, B.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater.4(6), 797–810 (1995).
[CrossRef]

Popp, J.

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Rakich, P. T.

Richter, D.

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Schellhorn, M.

M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys.8(10), 1151–1161 (2007).
[CrossRef]

Schimpf, D.

Scifres, D. R.

C. Lindström, R. D. Burnham, D. R. Scifres, T. L. Paoli, and W. Streifer, “One watt CW visible single-quantum-well lasers,” Electron. Lett.19(3), 80–81 (1983).
[CrossRef]

Seiter, M.

M. Seiter and M. W. Sigrist, “Trace-gas sensor based on mid-IR difference-frequency generation in PPLN with saturated output power,” Infrared Phys. Technol.41(5), 259–269 (2000).
[CrossRef]

Shepard, S. M.

S. M. Shepard, “Introduction to active thermography for non-destructive evaluation,” Anti-Corrosion Methods and Materials44(4), 236–239 (1997).
[CrossRef]

Shim, S.

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett.89(12), 121124 (2006).
[CrossRef]

Sigrist, M. W.

M. Seiter and M. W. Sigrist, “Trace-gas sensor based on mid-IR difference-frequency generation in PPLN with saturated output power,” Infrared Phys. Technol.41(5), 259–269 (2000).
[CrossRef]

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Soljacic, M.

Steinmetz, A.

Streifer, W.

C. Lindström, R. D. Burnham, D. R. Scifres, T. L. Paoli, and W. Streifer, “One watt CW visible single-quantum-well lasers,” Electron. Lett.19(3), 80–81 (1983).
[CrossRef]

Stutzki, F.

Terry, F. L.

S. Kim, P. Klimecky, J. B. Jeffries, F. L. Terry, and R. K. Hanson, “In situ measurements of HCl during plasma etching of poly-silicon using a diode laser absorption sensor,” Meas. Sci. Technol.14(9), 1662–1670 (2003).
[CrossRef]

Tittel, F. K.

Tünnermann, A.

Wadsworth, W. J.

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Yang, P.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Anti-Corrosion Methods and Materials (1)

S. M. Shepard, “Introduction to active thermography for non-destructive evaluation,” Anti-Corrosion Methods and Materials44(4), 236–239 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett.89(12), 121124 (2006).
[CrossRef]

C. R. Phys. (1)

M. Schellhorn, M. Eichhorn, C. Kieleck, and A. Hirth, “High repetition rate mid-infrared laser source,” C. R. Phys.8(10), 1151–1161 (2007).
[CrossRef]

Electron. Lett. (1)

C. Lindström, R. D. Burnham, D. R. Scifres, T. L. Paoli, and W. Streifer, “One watt CW visible single-quantum-well lasers,” Electron. Lett.19(3), 80–81 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Infrared Phys. Technol. (1)

M. Seiter and M. W. Sigrist, “Trace-gas sensor based on mid-IR difference-frequency generation in PPLN with saturated output power,” Infrared Phys. Technol.41(5), 259–269 (2000).
[CrossRef]

Meas. Sci. Technol. (3)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol.9(4), 545–562 (1998).
[CrossRef] [PubMed]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol.9(4), 545–562 (1998).
[CrossRef] [PubMed]

S. Kim, P. Klimecky, J. B. Jeffries, F. L. Terry, and R. K. Hanson, “In situ measurements of HCl during plasma etching of poly-silicon using a diode laser absorption sensor,” Meas. Sci. Technol.14(9), 1662–1670 (2003).
[CrossRef]

Nature (1)

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

D. G. Lancaster, “Efficient Nd:YAG pumped mid-IR laser based on cascaded KTP and ZGP optical parametric oscillators and a ZGP parametric amplifier,” Opt. Commun.282(2), 272–275 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Opt. Mater. (1)

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater.4(6), 797–810 (1995).
[CrossRef]

Opt. Photon. News (1)

F. J. Duarte, “Organic dye lasers: brief history and recent developments,” Opt. Photon. News14(10), 20–25 (2003).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Phase-matching diagram for the commercially available ESF LMA-15. When pumped at 1064nm this fiber will generate narrowband radiation at 650nm and at 2929nm.

Fig. 2
Fig. 2

(a) Pulse shapes at the pump (blue), signal (red) and idler (green) wavelengths after ~0.4m LMA-15 fiber, and (b) evolution of the energy conversion efficiency along the fiber length.

Fig. 3
Fig. 3

Schematic representation of the energy back-conversion process: (a) at the beginning all the energy/photons (represented by the circles) are injected at the pump wavelength (blue central arrow); (b) as the light propagates down the fiber FWM starts to transfer energy to the signal (left red arrow) and idler (right green arrow) wavelengths; (c) this processes continues until the signal and idler waves are intense enough, moment at which the direction of energy transfer is reversed and the energy flows back to the pump wavelength.

Fig. 4
Fig. 4

Schematic representation of the method employed to avoid energy back-conversion: (a) at the beginning all the energy/photons (represented by the circles) are injected at the pump wavelength (blue central arrow); (b) as the light propagates down the fiber, FWM starts to transfer energy to the signal (left red arrow) and idler (right green arrow) wavelengths. However, the photons at the idler wavelength are lost due to the high propagation losses introduced (yellow arrows); (c) this way, since there is a strong imbalance in the number of photons at the signal and idler wavelengths, the energy back-conversion process is mitigated.

Fig. 5
Fig. 5

(a) Pulse shapes at the pump (blue), signal (red) and idler (green) wavelengths after ~0.4m LMA-15 fiber, and (b) evolution of the energy conversion efficiency along the fiber length. In this case a propagation loss of 500dB/m at the idler wavelength has been considered in the simulations.

Fig. 6
Fig. 6

Schematic diagram of the experimental setup. The system is seeded by a microchip laser (MCL) emitting 250ps pulses at a variable repetition rate from 1 to 3MHz. OI: optical isolator; HWP: half-wave plate; PH: pin-hole; FR: Faraday rotator; BPF: band-pass filter; PD: photodiode; OSA: optical spectrum analyzer; Cam: camera.

Fig. 7
Fig. 7

Experimental results using 27cm of LMA-10 fiber. The fiber was pumped at 1064nm with a maximum of 60W pump power (250ps pulses at 3MHz repetition frequency).

Fig. 8
Fig. 8

Experimental results using 57cm of LMA-15 fiber. The fiber was pumped at 1064nm with a maximum of 60W pump power (250ps pulses at 1.5MHz repetition frequency): (a) output power at the signal wavelength as a function of the coupled pump power, (b) evolution of the output pulses at 650nm with increasing output power.

Fig. 9
Fig. 9

Evolution of the spectrum at the output of the 57cm of LMA-15 fiber for increasing output powers.

Metrics