Abstract

We control the point-spread-function of high numerical aperture objectives used for direct laser writing with a spatial light modulator. Combining aberration correction with different types of amplitude filters to reduce the aspect ratio of the point-spread-function enhances the structural and optical quality of woodpile photonic crystals. Here, aberration correction is crucial to ensure the functionality of the filters. Measured point-spread-functions compare well with numerical calculations and with structures generated by direct laser writing. The shaped point-spread-function not only influences the maximum achievable three-dimensional resolution but also proximity effect and optical performance of woodpile photonic crystals.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” JMEMS7, 411–415 (1998).
  2. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
    [CrossRef] [PubMed]
  3. F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater.22, 868–871 (2010).
    [CrossRef] [PubMed]
  4. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
    [CrossRef] [PubMed]
  5. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7, 31–37 (2008).
    [CrossRef]
  6. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
    [CrossRef] [PubMed]
  7. M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater.21, 4680–4682 (2009).
    [CrossRef]
  8. T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater.24, 2710–2714 (2012).
    [CrossRef] [PubMed]
  9. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
    [CrossRef]
  10. Here, as in many other publication, we refer to the iso-intensity surface. However, the actual shape is determined be the distribution of the electric-field (∝ |E|2 for one-photon absorption; ∝ |E|4 for two-photon absorption), as it is this field interacting with the photoinitiator molecules.
  11. M. Gu, Advanced Optical Imaging Theory (Springer, Berlin Heidelberg, 2000)
  12. V. Schmidt, L. Kuna, V. Satzinger, G. Jakopic, and G. Leising, “Two-photon 3D lithography: a versatile fabrication method for complex 3D shapes and optical interconnects within the scope of innovative industrial applications,” JLMN2, 170–177 (2007).
    [CrossRef]
  13. A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nat. Mater.5, 942 (2006).
    [CrossRef] [PubMed]
  14. M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Funct. Mater.17, 2273–2277 (2007).
    [CrossRef]
  15. M. A. A. Neil, R. Juškaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett.25, 245–247 (2000).
    [CrossRef]
  16. P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett.37, 470–472 (2012).
    [CrossRef] [PubMed]
  17. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13, 5676–5681 (2005).
    [CrossRef] [PubMed]
  18. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19, 9419–9425 (2011).
    [CrossRef] [PubMed]
  19. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express18, 21091–21099 (2010).
    [CrossRef]
  20. J. A. Davis, J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
    [CrossRef]
  21. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. Phys.7, 1–11 (2005).
    [CrossRef]
  22. T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun.141, 298–213 (1997).
    [CrossRef]
  23. A. S. van de Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, “Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system,” Opt. Express12, 1281–1293 (2004).
    [CrossRef] [PubMed]
  24. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun.89, 413–416 (1994).
    [CrossRef]
  25. While PSF measurements are ∝ |E|2, the two-photon polymerization is ∝ |E|4. This and the difference between the index of refraction of immersion oil (1.518) and photoresist (1.47) explains the difference in the expected aspect ratios.
  26. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
    [CrossRef] [PubMed]
  27. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.1–23 (2012).

2012 (3)

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater.24, 2710–2714 (2012).
[CrossRef] [PubMed]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.1–23 (2012).

P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett.37, 470–472 (2012).
[CrossRef] [PubMed]

2011 (1)

2010 (5)

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
[CrossRef] [PubMed]

A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express18, 21091–21099 (2010).
[CrossRef]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater.22, 868–871 (2010).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
[CrossRef] [PubMed]

2009 (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater.21, 4680–4682 (2009).
[CrossRef]

2008 (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7, 31–37 (2008).
[CrossRef]

2007 (2)

V. Schmidt, L. Kuna, V. Satzinger, G. Jakopic, and G. Leising, “Two-photon 3D lithography: a versatile fabrication method for complex 3D shapes and optical interconnects within the scope of innovative industrial applications,” JLMN2, 170–177 (2007).
[CrossRef]

M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Funct. Mater.17, 2273–2277 (2007).
[CrossRef]

2006 (1)

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nat. Mater.5, 942 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (2)

A. S. van de Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, “Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system,” Opt. Express12, 1281–1293 (2004).
[CrossRef] [PubMed]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

J. A. Davis, J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

1998 (1)

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” JMEMS7, 411–415 (1998).

1997 (1)

T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun.141, 298–213 (1997).
[CrossRef]

1994 (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun.89, 413–416 (1994).
[CrossRef]

Ams, M.

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Bastmeyer, M.

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater.22, 868–871 (2010).
[CrossRef] [PubMed]

Billy, L.

Biswas, R.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun.89, 413–416 (1994).
[CrossRef]

Booth, M. J.

Braat, J. J. M.

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
[CrossRef] [PubMed]

Bückmann, T.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater.24, 2710–2714 (2012).
[CrossRef] [PubMed]

Busch, K.

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
[CrossRef] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

Cademartiri, L.

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nat. Mater.5, 942 (2006).
[CrossRef] [PubMed]

Campos, J.

J. A. Davis, J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

Chan, C. T.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun.89, 413–416 (1994).
[CrossRef]

Cottrell, D. M.

J. A. Davis, J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

Courtial, J.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. Phys.7, 1–11 (2005).
[CrossRef]

Cumming, B. P.

Davis, J. A.

J. A. Davis, J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

J. A. Davis, J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Dennis, M. R.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. Phys.7, 1–11 (2005).
[CrossRef]

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

Eberl, C.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater.24, 2710–2714 (2012).
[CrossRef] [PubMed]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
[CrossRef] [PubMed]

Essig, S.

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
[CrossRef] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

Fischer, J.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.1–23 (2012).

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater.22, 868–871 (2010).
[CrossRef] [PubMed]

Franz, C. M.

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater.22, 868–871 (2010).
[CrossRef] [PubMed]

Frölich, A.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater.24, 2710–2714 (2012).
[CrossRef] [PubMed]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7, 31–37 (2008).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7, 31–37 (2008).
[CrossRef]

Gu, M.

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7, 31–37 (2008).
[CrossRef]

Hermatschweiler, M.

M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Funct. Mater.17, 2273–2277 (2007).
[CrossRef]

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nat. Mater.5, 942 (2006).
[CrossRef] [PubMed]

Higdon, P.

T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun.141, 298–213 (1997).
[CrossRef]

Ho, K. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun.89, 413–416 (1994).
[CrossRef]

Jakopic, G.

V. Schmidt, L. Kuna, V. Satzinger, G. Jakopic, and G. Leising, “Two-photon 3D lithography: a versatile fabrication method for complex 3D shapes and optical interconnects within the scope of innovative industrial applications,” JLMN2, 170–177 (2007).
[CrossRef]

Jesacher, A.

Jiang, Z.

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater.22, 868–871 (2010).
[CrossRef] [PubMed]

Juškaitis, R.

M. A. A. Neil, R. Juškaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett.25, 245–247 (2000).
[CrossRef]

T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun.141, 298–213 (1997).
[CrossRef]

Kadic, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater.24, 2710–2714 (2012).
[CrossRef] [PubMed]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7, 31–37 (2008).
[CrossRef]

Kaschke, J.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater.24, 2710–2714 (2012).
[CrossRef] [PubMed]

Kawata, S.

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” JMEMS7, 411–415 (1998).

Kennerknecht, T.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater.24, 2710–2714 (2012).
[CrossRef] [PubMed]

Klein, F.

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater.22, 868–871 (2010).
[CrossRef] [PubMed]

Kuna, L.

V. Schmidt, L. Kuna, V. Satzinger, G. Jakopic, and G. Leising, “Two-photon 3D lithography: a versatile fabrication method for complex 3D shapes and optical interconnects within the scope of innovative industrial applications,” JLMN2, 170–177 (2007).
[CrossRef]

Laczik, Z. J.

Langford, N. K.

Leach, J.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. Phys.7, 1–11 (2005).
[CrossRef]

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Funct. Mater.17, 2273–2277 (2007).
[CrossRef]

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nat. Mater.5, 942 (2006).
[CrossRef] [PubMed]

Leising, G.

V. Schmidt, L. Kuna, V. Satzinger, G. Jakopic, and G. Leising, “Two-photon 3D lithography: a versatile fabrication method for complex 3D shapes and optical interconnects within the scope of innovative industrial applications,” JLMN2, 170–177 (2007).
[CrossRef]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Liu, N.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7, 31–37 (2008).
[CrossRef]

Marshall, G. D.

Maruo, S.

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” JMEMS7, 411–415 (1998).

Metcalf, B. J.

Moreno, I.

J. A. Davis, J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

Neil, M. A. A.

Ozin, G. A.

M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Funct. Mater.17, 2273–2277 (2007).
[CrossRef]

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nat. Mater.5, 942 (2006).
[CrossRef] [PubMed]

Padgett, M. J.

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. Phys.7, 1–11 (2005).
[CrossRef]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
[CrossRef] [PubMed]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

Pereira, S. F.

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater.21, 4680–4682 (2009).
[CrossRef]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

Salter, P. S.

Sarafis, V.

Satzinger, V.

V. Schmidt, L. Kuna, V. Satzinger, G. Jakopic, and G. Leising, “Two-photon 3D lithography: a versatile fabrication method for complex 3D shapes and optical interconnects within the scope of innovative industrial applications,” JLMN2, 170–177 (2007).
[CrossRef]

Schmidt, V.

V. Schmidt, L. Kuna, V. Satzinger, G. Jakopic, and G. Leising, “Two-photon 3D lithography: a versatile fabrication method for complex 3D shapes and optical interconnects within the scope of innovative industrial applications,” JLMN2, 170–177 (2007).
[CrossRef]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7, 31–37 (2008).
[CrossRef]

Sigalas, M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun.89, 413–416 (1994).
[CrossRef]

Simmonds, R. D.

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun.89, 413–416 (1994).
[CrossRef]

Spence, D. J.

Spring, J. B.

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
[CrossRef] [PubMed]

Stenger, N.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater.24, 2710–2714 (2012).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
[CrossRef] [PubMed]

Striebel, T.

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater.22, 868–871 (2010).
[CrossRef] [PubMed]

Thiel, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater.24, 2710–2714 (2012).
[CrossRef] [PubMed]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
[CrossRef] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater.21, 4680–4682 (2009).
[CrossRef]

Thomas-Peter, N.

Toninelli, C.

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nat. Mater.5, 942 (2006).
[CrossRef] [PubMed]

van de Nes, A. S.

von Freymann, G.

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
[CrossRef] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater.22, 868–871 (2010).
[CrossRef] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater.21, 4680–4682 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Funct. Mater.17, 2273–2277 (2007).
[CrossRef]

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nat. Mater.5, 942 (2006).
[CrossRef] [PubMed]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

Walmsley, I. A.

Wegener, M.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.1–23 (2012).

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater.24, 2710–2714 (2012).
[CrossRef] [PubMed]

I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
[CrossRef] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater.22, 868–871 (2010).
[CrossRef] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater.21, 4680–4682 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Funct. Mater.17, 2273–2277 (2007).
[CrossRef]

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nat. Mater.5, 942 (2006).
[CrossRef] [PubMed]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

Wiersma, D. S.

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nat. Mater.5, 942 (2006).
[CrossRef] [PubMed]

Wilson, T.

Withford, M. J.

Wolff, C.

Yzuel, M. J.

J. A. Davis, J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

Adv. Funct. Mater. (2)

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010).
[CrossRef]

M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Funct. Mater.17, 2273–2277 (2007).
[CrossRef]

Adv. Mater. (3)

F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater.22, 868–871 (2010).
[CrossRef] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater.21, 4680–4682 (2009).
[CrossRef]

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater.24, 2710–2714 (2012).
[CrossRef] [PubMed]

Appl. Optics (1)

J. A. Davis, J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999).
[CrossRef]

JLMN (1)

V. Schmidt, L. Kuna, V. Satzinger, G. Jakopic, and G. Leising, “Two-photon 3D lithography: a versatile fabrication method for complex 3D shapes and optical interconnects within the scope of innovative industrial applications,” JLMN2, 170–177 (2007).
[CrossRef]

JMEMS (1)

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” JMEMS7, 411–415 (1998).

Laser Photonics Rev. (1)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.1–23 (2012).

Nat. Mater. (3)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004).
[CrossRef] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7, 31–37 (2008).
[CrossRef]

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nat. Mater.5, 942 (2006).
[CrossRef] [PubMed]

New J. Phys. (1)

J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. Phys.7, 1–11 (2005).
[CrossRef]

Opt. Commun. (1)

T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun.141, 298–213 (1997).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Science (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010).
[CrossRef] [PubMed]

Solid State Commun. (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun.89, 413–416 (1994).
[CrossRef]

Other (3)

While PSF measurements are ∝ |E|2, the two-photon polymerization is ∝ |E|4. This and the difference between the index of refraction of immersion oil (1.518) and photoresist (1.47) explains the difference in the expected aspect ratios.

Here, as in many other publication, we refer to the iso-intensity surface. However, the actual shape is determined be the distribution of the electric-field (∝ |E|2 for one-photon absorption; ∝ |E|4 for two-photon absorption), as it is this field interacting with the photoinitiator molecules.

M. Gu, Advanced Optical Imaging Theory (Springer, Berlin Heidelberg, 2000)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup. (b) Schematic drawing of amplitude filters: Unobscured pupil and shaded-ring filter. Parameters are the radii and amplitude transmissions of the different SRFs.

Fig. 2
Fig. 2

Measured and calculated |E|2 distribution in the focal region. Top row: Lateral scans through z = 0, middle row: Corresponding axial scans through y = 0, bottom row: Numerical calculated axial scans. PSF generated by (a) a blazed grating, (b) aberration correction plus blazed grating, (c) and (d) same as (b) but with additional SRFs with different parameters. The contour lines are iso-intensity curves at 75% and 50% of the peak intensity as guides to the eyes.

Fig. 3
Fig. 3

Sample woodpile photonic crystals written with blaze (left) and SRFa (right). Insets show focused ion beam cuts through a rod unveiling the aspect ratios (viewing angle 45°). Right hand side: Spectrally resolved transmittance and reflectance measurements of the woodpiles shown on the left.

Fig. 4
Fig. 4

Transmittance spectra plotted over rod diameter and aspect ratio for (top) nominal 700 nm and (bottom) nominal 450 nm woodpiles. The calculations take the experimentally observed shrinkage into account.

Fig. 5
Fig. 5

Unpolarized reflectance and transmittance spectra of woodpiles with 12 layers written with different amplitude filters. In all cases the Δλ/λ ratio increases and the stop-band is more pronounced for structures written with SRFa. The increased proximity effect for SRFb prevents 400 nm woodpiles of good quality. The grey line represents the height of the reflectance peak of structures written with the unobscured pupil.

Metrics