Abstract

We demonstrated ultra-wideband wavelength division multiplexing (WDM) transmission from 850 to 1550 nm in graded-index multi-mode fiber (GI-MMF) using endlessly single-mode photonic crystal fiber (ESM-PCF) as a launch device. Effective single-mode guidance is obtained in multi-mode fiber at all wavelengths by splicing cm-order length ESM-PCF to the transmission fiber. We achieved 3 × 10 Gbit/s WDM transmission in a 1 km-long 50-μm-core GI-MMF. We also realized penalty free 10 Gbit/s data transmission at a wavelength of 850 nm by optimizing the PCF structure. This method has the potential to achieve greater total transmission capacity for MMF systems by the addition of more wavelength channels.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Freund, C. Bunge, N. Ledentsov, D. Molin, and C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol.28(4), 569–586 (2010).
    [CrossRef]
  2. T. Itoh, H. Fukuyama, S. Tsunashima, E. Yoshida, Y. Yamabayashi, M. Muraguchi, H. Toba, and H. Sugahara, “1-km transmission of 10 Gbit/s optical signal over legacy MMF using mode limiting transmission and incoherent light source,” Opt. Fiber Conf. Tech. Digest Anaheim CA (2005) OWH3.
  3. I. Gasulla and J. Capmany, “1 Tb/s x km multimode fiber link combining WDM transmission and low-linewidth lasers,” Opt. Express16(11), 8033–8038 (2008).
    [CrossRef] [PubMed]
  4. D. Sim, Y. Takushima, and Y. Chung, “High-speed multimode fiber transmission by using mode-field matched center-launching technique,” J. Lightwave Technol.27(8), 1018–1026 (2009).
    [CrossRef]
  5. Y. Lizé, E. Mägi, V. Ta’eed, J. Bolger, P. Steinvurzel, and B. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express12(14), 3209–3217 (2004).
    [CrossRef] [PubMed]
  6. S. Yamazaki, H. Hotta, S. Nakaya, K. Kobayashi, Y. Koike, E. Nihei, and T. Ishigure, “A 2.5 Gb/s 100 m GRIN plastic optical fiber data link at 650 nm wavelength,” in Graded Index POF (Information Gatekeepers, Boston, 1996), pp. 98–101.
  7. T. Mori, T. Yamamoto, K. Kurokawa, and S. Tomita, “1.0 µm band supercontinuum generation using photonic crystal fiber and its application as multi-wavelength pulse source,” IEICE Electron. Express7(19), 1504–1508 (2010).
    [CrossRef]
  8. K. Saitoh, Y. Tsuchida, M. Koshiba, and N. A. Mortensen, “Endlessly single-mode holey fibers: the influence of core design,” Opt. Express13(26), 10833–10839 (2005).
    [CrossRef] [PubMed]
  9. D. Yevick and B. Hermansson, “Efficient beam propagation techniques,” J. Quantum Electron.26(1), 109–112 (1990).
    [CrossRef]

2010 (2)

R. Freund, C. Bunge, N. Ledentsov, D. Molin, and C. Caspar, “High-speed transmission in multimode fibers,” J. Lightwave Technol.28(4), 569–586 (2010).
[CrossRef]

T. Mori, T. Yamamoto, K. Kurokawa, and S. Tomita, “1.0 µm band supercontinuum generation using photonic crystal fiber and its application as multi-wavelength pulse source,” IEICE Electron. Express7(19), 1504–1508 (2010).
[CrossRef]

2009 (1)

2008 (1)

2005 (1)

2004 (1)

1990 (1)

D. Yevick and B. Hermansson, “Efficient beam propagation techniques,” J. Quantum Electron.26(1), 109–112 (1990).
[CrossRef]

Bolger, J.

Bunge, C.

Capmany, J.

Caspar, C.

Chung, Y.

Eggleton, B.

Freund, R.

Gasulla, I.

Hermansson, B.

D. Yevick and B. Hermansson, “Efficient beam propagation techniques,” J. Quantum Electron.26(1), 109–112 (1990).
[CrossRef]

Koshiba, M.

Kurokawa, K.

T. Mori, T. Yamamoto, K. Kurokawa, and S. Tomita, “1.0 µm band supercontinuum generation using photonic crystal fiber and its application as multi-wavelength pulse source,” IEICE Electron. Express7(19), 1504–1508 (2010).
[CrossRef]

Ledentsov, N.

Lizé, Y.

Mägi, E.

Molin, D.

Mori, T.

T. Mori, T. Yamamoto, K. Kurokawa, and S. Tomita, “1.0 µm band supercontinuum generation using photonic crystal fiber and its application as multi-wavelength pulse source,” IEICE Electron. Express7(19), 1504–1508 (2010).
[CrossRef]

Mortensen, N. A.

Saitoh, K.

Sim, D.

Steinvurzel, P.

Ta’eed, V.

Takushima, Y.

Tomita, S.

T. Mori, T. Yamamoto, K. Kurokawa, and S. Tomita, “1.0 µm band supercontinuum generation using photonic crystal fiber and its application as multi-wavelength pulse source,” IEICE Electron. Express7(19), 1504–1508 (2010).
[CrossRef]

Tsuchida, Y.

Yamamoto, T.

T. Mori, T. Yamamoto, K. Kurokawa, and S. Tomita, “1.0 µm band supercontinuum generation using photonic crystal fiber and its application as multi-wavelength pulse source,” IEICE Electron. Express7(19), 1504–1508 (2010).
[CrossRef]

Yevick, D.

D. Yevick and B. Hermansson, “Efficient beam propagation techniques,” J. Quantum Electron.26(1), 109–112 (1990).
[CrossRef]

IEICE Electron. Express (1)

T. Mori, T. Yamamoto, K. Kurokawa, and S. Tomita, “1.0 µm band supercontinuum generation using photonic crystal fiber and its application as multi-wavelength pulse source,” IEICE Electron. Express7(19), 1504–1508 (2010).
[CrossRef]

J. Lightwave Technol. (2)

J. Quantum Electron. (1)

D. Yevick and B. Hermansson, “Efficient beam propagation techniques,” J. Quantum Electron.26(1), 109–112 (1990).
[CrossRef]

Opt. Express (3)

Other (2)

S. Yamazaki, H. Hotta, S. Nakaya, K. Kobayashi, Y. Koike, E. Nihei, and T. Ishigure, “A 2.5 Gb/s 100 m GRIN plastic optical fiber data link at 650 nm wavelength,” in Graded Index POF (Information Gatekeepers, Boston, 1996), pp. 98–101.

T. Itoh, H. Fukuyama, S. Tsunashima, E. Yoshida, Y. Yamabayashi, M. Muraguchi, H. Toba, and H. Sugahara, “1-km transmission of 10 Gbit/s optical signal over legacy MMF using mode limiting transmission and incoherent light source,” Opt. Fiber Conf. Tech. Digest Anaheim CA (2005) OWH3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of endlessly single-mode PCF launch device.

Fig. 2
Fig. 2

Cross-sectional image of PCF.

Fig. 3
Fig. 3

Coupling loss as a function of PCF length: (a) LP01 mode, and (b) LP11 mode.

Fig. 4
Fig. 4

Experimental setup for near field pattern observation.

Fig. 5
Fig. 5

Near field pattern of PCF types A, B and C.

Fig. 6
Fig. 6

Experimental setup for ultra-wideband WDM transmission.

Fig. 7
Fig. 7

WDM transmission characteristics.

Fig. 8
Fig. 8

Cross-sectional image of PCF.

Fig. 9
Fig. 9

Coupling loss of LP11 mode as a function PCF length.

Fig. 10
Fig. 10

Setup for transmission experiment.

Fig. 11
Fig. 11

WDM transmission characteristics.

Tables (3)

Tables Icon

Table 1 Parameters of PCF types A, B and C.

Tables Icon

Table 2 MFDs of Type B PCF and GI-MMF.

Tables Icon

Table 3 Parameters of PCF sample 1, 2 and 3.

Metrics