Abstract

We study theoretically and numerically third-harmonic generation (THG) from model geometries (interfaces, slabs, periodic media) illuminated by Bessel beams produced by focusing an annular intensity profile. Bessel beams exhibit a phase and intensity distribution near focus different from Gaussian beams, resulting in distinct THG phase matching properties and coherent scattering directions. Excitation wave vectors are controlled by adjusting the bounding aperture angles of the Bessel beam. In addition to extended depth-of-field imaging, this opens interesting perspectives for coherent nonlinear microscopy, such as extracting sample spatial frequencies in the λ/8 - λ range in the case of organized media.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic imaging of endogenous structural proteins,” Methods29, 97–109 (2003).
    [CrossRef] [PubMed]
  2. J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B108, 827–840 (2004).
    [CrossRef]
  3. A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D: Appl. Phys.38, R59–R81 (2005).
    [CrossRef]
  4. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic generation microscopy in biology,” Opt. Express5, 169–175 (1999).
    [CrossRef] [PubMed]
  5. J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun.196, 325–330 (2001).
    [CrossRef]
  6. J.-X. Cheng and X. S. Xie, “Green’s function formulation for third harmonic generation microscopy,” J. Opt. Soc. Am. B19, 1604–1610 (2002).
    [CrossRef]
  7. D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy,” Opt. Lett.30, 2134–2136 (2005).
    [CrossRef] [PubMed]
  8. C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9, 78 (2007).
    [CrossRef]
  9. M. R. Foreman, S. S. Sherif, P. R. T. Munro, and P. Török, “Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region,” Opt. Express16, 4901–4917 (2008).
    [CrossRef] [PubMed]
  10. C. Lutz, T. S Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters” Nat. Methods5, 821–827 (2008).
    [CrossRef]
  11. N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express16, 14703–14715 (2008).
    [CrossRef] [PubMed]
  12. K. Yoshiki, K. Ryosuke, M. Hashimoto, T. Araki, and N. Hashimoto, “Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation,” Opt. Lett.32, 1680–1682 (2007).
    [CrossRef] [PubMed]
  13. V. V. Krishnamachari and E. O. Potma, “Detecting lateral interfaces with focus-engineered coherent anti-stokes raman scattering microscopy,” J. Raman Spectr.39, 593–598 (2008).
    [CrossRef]
  14. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997).
    [CrossRef]
  15. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc.191, 266–274 (1998).
    [CrossRef] [PubMed]
  16. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147, 3–11 (2004).
    [CrossRef] [PubMed]
  17. C. K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol.147, 19–30 (2004).
    [CrossRef] [PubMed]
  18. D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3, 47–53 (2006).
    [CrossRef]
  19. N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
    [CrossRef]
  20. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987).
    [CrossRef] [PubMed]
  21. J. Durnin, “Exact solutions for nondiffracting beams. i. the scalar theory,” J. Opt. Soc. Am. A4, 651–654 (1987).
    [CrossRef]
  22. J. E. Durnin, J. J. Miceli, and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett.13, 79–80 (1988).
    [CrossRef] [PubMed]
  23. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys.46, 15–28 (2005).
    [CrossRef]
  24. A. Boivin, “On the theory of diffraction by concentric arrays of ring-shaped apertures,” J. Opt. Soc. Am.42, 60–64 (1952).
    [CrossRef]
  25. W. T. Welford, “Use of annular apertures to increase focal depth,” J. Opt. Soc. Am.50, 749–752 (1960).
    [CrossRef]
  26. C. J. R. Sheppard, “The use of lenses with annular aperture in scanning optical microscopy,” Optik48, 329–334 (1977).
  27. S. W. Hell, P. E. Henninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun.117, 20–24 (1995).
    [CrossRef]
  28. E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun.268, 253–260 (2006).
    [CrossRef]
  29. N. Olivier, A. Mermillod-Blondin, C. B. Arnold, and E. Beaurepaire, “Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens,” Opt. Lett.34, 1684–1686 (2009).
    [CrossRef] [PubMed]
  30. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8, 417–423 (2011).
    [CrossRef] [PubMed]
  31. Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun.151, 207–211, (2008).
    [CrossRef]
  32. F.O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics4, 780–785, (2010).
    [CrossRef]
  33. K. Shinozaki, X. Chang-Qing, H. Sasaki, and T. Kamijoh, “A comparison of optical second-harmonic generation efficiency using Bessel and Gaussian beams in bulk crystals,” Opt. Commun.133, 300–304 (1997).
    [CrossRef]
  34. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Efficiency of second-harmonic generation with Bessel beams,” Phys. Rev. A60, 2438–2441 (1999).
    [CrossRef]
  35. C. F. R. Caron and R. M. Potvliege, “Optimum conical angle of a bessel–gauss beam for low-order harmonic generation in gases,” J. Opt. Soc. Am. B16, 1377–1384 (1999).
    [CrossRef]
  36. S. P. Tewari, H. Huang, and R. W. Boyd, “Theory of third-harmonic generation using bessel beams, and self-phase-matching,” Phys. Rev. A54, 2314–2325 (1996).
    [CrossRef] [PubMed]
  37. V. E. Peet and R. V. Tsubin, “Third-harmonic generation and multiphoton ionization in bessel beams,” Phys. Rev. A56, 1613–1620 (1997).
    [CrossRef]
  38. V. E. Peet and S. V. Shchemeljov, “Spectral and spatial characteristics of third-harmonic generation in conical light beams,” Phys. Rev. A67, 013801 (2003).
    [CrossRef]
  39. S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. A10, 125103 (2008).
    [CrossRef]
  40. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. Royal Soc. A253, 358–379 (1959).
    [CrossRef]
  41. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
    [CrossRef]
  42. D. Débarre, N. Olivier, and E. Beaurepaire, “Signal epidetection in third-harmonic generation microscopy of turbid media,” Opt. Express15, 8913–8924 (2007).
    [CrossRef] [PubMed]
  43. Q. Zhan “Second-order tilted wave interpretation of the Gouy phase shift under high numerical aperture uniform illumination,” Optics Commun.242, 351–360 (2004).
    [CrossRef]
  44. A. Piskarskas, V. Smilgevičius, A. Stabinis, V. Jarutis, V. Pašiškevičius, S. Wang, J. Tellefsen, and F. Laurell, “Noncollinear second-harmonic generation in periodically poled KTiOPO(4) excited by the bessel beam,” Opt. Lett.24, 1053–1055 (1999).
    [CrossRef]
  45. V. V. Krishnamachari and E. O. Potma, “Multi-dimensional differential imaging with fe-cars microscopy,” Vib. Spectrosc.50, 10–14 (2009).
    [CrossRef]
  46. D. Débarre and E. Beaurepaire, “Quantitative characterization of biological liquids for third-harmonic generation microscopy,” Biophys. J.92, 603–612 (2007).
    [CrossRef]
  47. S. Carrasco, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Second- and third-harmonic generation with vector Gaussian beams,” J. Opt. Soc. Am. B23, 2134–2141 (2006).
    [CrossRef]
  48. N. Olivier, F. Aptel, K. Plamann, M-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express5, 5028–5040 (2010).
    [CrossRef]
  49. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Enhanced spatial resolution in third-harmonic microscopy through polarization switching,” Opt. Lett.34, 1240–1242 (2009).
    [CrossRef] [PubMed]
  50. F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett.34, 1870–1872 (2009).
    [CrossRef] [PubMed]

2011 (1)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8, 417–423 (2011).
[CrossRef] [PubMed]

2010 (3)

F.O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics4, 780–785, (2010).
[CrossRef]

N. Olivier, F. Aptel, K. Plamann, M-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express5, 5028–5040 (2010).
[CrossRef]

N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
[CrossRef]

2009 (4)

2008 (6)

M. R. Foreman, S. S. Sherif, P. R. T. Munro, and P. Török, “Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region,” Opt. Express16, 4901–4917 (2008).
[CrossRef] [PubMed]

N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express16, 14703–14715 (2008).
[CrossRef] [PubMed]

S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. A10, 125103 (2008).
[CrossRef]

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun.151, 207–211, (2008).
[CrossRef]

C. Lutz, T. S Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters” Nat. Methods5, 821–827 (2008).
[CrossRef]

V. V. Krishnamachari and E. O. Potma, “Detecting lateral interfaces with focus-engineered coherent anti-stokes raman scattering microscopy,” J. Raman Spectr.39, 593–598 (2008).
[CrossRef]

2007 (4)

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9, 78 (2007).
[CrossRef]

D. Débarre and E. Beaurepaire, “Quantitative characterization of biological liquids for third-harmonic generation microscopy,” Biophys. J.92, 603–612 (2007).
[CrossRef]

K. Yoshiki, K. Ryosuke, M. Hashimoto, T. Araki, and N. Hashimoto, “Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation,” Opt. Lett.32, 1680–1682 (2007).
[CrossRef] [PubMed]

D. Débarre, N. Olivier, and E. Beaurepaire, “Signal epidetection in third-harmonic generation microscopy of turbid media,” Opt. Express15, 8913–8924 (2007).
[CrossRef] [PubMed]

2006 (3)

S. Carrasco, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Second- and third-harmonic generation with vector Gaussian beams,” J. Opt. Soc. Am. B23, 2134–2141 (2006).
[CrossRef]

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun.268, 253–260 (2006).
[CrossRef]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3, 47–53 (2006).
[CrossRef]

2005 (3)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys.46, 15–28 (2005).
[CrossRef]

A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D: Appl. Phys.38, R59–R81 (2005).
[CrossRef]

D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy,” Opt. Lett.30, 2134–2136 (2005).
[CrossRef] [PubMed]

2004 (4)

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B108, 827–840 (2004).
[CrossRef]

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147, 3–11 (2004).
[CrossRef] [PubMed]

C. K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol.147, 19–30 (2004).
[CrossRef] [PubMed]

Q. Zhan “Second-order tilted wave interpretation of the Gouy phase shift under high numerical aperture uniform illumination,” Optics Commun.242, 351–360 (2004).
[CrossRef]

2003 (2)

V. E. Peet and S. V. Shchemeljov, “Spectral and spatial characteristics of third-harmonic generation in conical light beams,” Phys. Rev. A67, 013801 (2003).
[CrossRef]

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic imaging of endogenous structural proteins,” Methods29, 97–109 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun.196, 325–330 (2001).
[CrossRef]

1999 (4)

1998 (1)

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc.191, 266–274 (1998).
[CrossRef] [PubMed]

1997 (3)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997).
[CrossRef]

V. E. Peet and R. V. Tsubin, “Third-harmonic generation and multiphoton ionization in bessel beams,” Phys. Rev. A56, 1613–1620 (1997).
[CrossRef]

K. Shinozaki, X. Chang-Qing, H. Sasaki, and T. Kamijoh, “A comparison of optical second-harmonic generation efficiency using Bessel and Gaussian beams in bulk crystals,” Opt. Commun.133, 300–304 (1997).
[CrossRef]

1996 (1)

S. P. Tewari, H. Huang, and R. W. Boyd, “Theory of third-harmonic generation using bessel beams, and self-phase-matching,” Phys. Rev. A54, 2314–2325 (1996).
[CrossRef] [PubMed]

1995 (1)

S. W. Hell, P. E. Henninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun.117, 20–24 (1995).
[CrossRef]

1988 (1)

1987 (2)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987).
[CrossRef] [PubMed]

J. Durnin, “Exact solutions for nondiffracting beams. i. the scalar theory,” J. Opt. Soc. Am. A4, 651–654 (1987).
[CrossRef]

1977 (1)

C. J. R. Sheppard, “The use of lenses with annular aperture in scanning optical microscopy,” Optik48, 329–334 (1977).

1960 (1)

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. Royal Soc. A253, 358–379 (1959).
[CrossRef]

1952 (1)

Allen, L.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Efficiency of second-harmonic generation with Bessel beams,” Phys. Rev. A60, 2438–2441 (1999).
[CrossRef]

Aptel, F.

N. Olivier, F. Aptel, K. Plamann, M-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express5, 5028–5040 (2010).
[CrossRef]

Araki, T.

Arlt, J.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Efficiency of second-harmonic generation with Bessel beams,” Phys. Rev. A60, 2438–2441 (1999).
[CrossRef]

Arnold, C. B.

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997).
[CrossRef]

Bartels, R. A.

Beaurepaire, E.

N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
[CrossRef]

N. Olivier, F. Aptel, K. Plamann, M-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express5, 5028–5040 (2010).
[CrossRef]

N. Olivier, A. Mermillod-Blondin, C. B. Arnold, and E. Beaurepaire, “Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens,” Opt. Lett.34, 1684–1686 (2009).
[CrossRef] [PubMed]

N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express16, 14703–14715 (2008).
[CrossRef] [PubMed]

D. Débarre, N. Olivier, and E. Beaurepaire, “Signal epidetection in third-harmonic generation microscopy of turbid media,” Opt. Express15, 8913–8924 (2007).
[CrossRef] [PubMed]

D. Débarre and E. Beaurepaire, “Quantitative characterization of biological liquids for third-harmonic generation microscopy,” Biophys. J.92, 603–612 (2007).
[CrossRef]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3, 47–53 (2006).
[CrossRef]

D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy,” Opt. Lett.30, 2134–2136 (2005).
[CrossRef] [PubMed]

Bernet, S.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9, 78 (2007).
[CrossRef]

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8, 417–423 (2011).
[CrossRef] [PubMed]

Boivin, A.

Botcherby, E. J.

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun.268, 253–260 (2006).
[CrossRef]

Bouchal, Z.

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun.151, 207–211, (2008).
[CrossRef]

Bourgine, P.

N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
[CrossRef]

Boyd, R. W.

S. P. Tewari, H. Huang, and R. W. Boyd, “Theory of third-harmonic generation using bessel beams, and self-phase-matching,” Phys. Rev. A54, 2314–2325 (1996).
[CrossRef] [PubMed]

Brakenhoff, G. J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc.191, 266–274 (1998).
[CrossRef] [PubMed]

Campagnola, P. J.

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic imaging of endogenous structural proteins,” Methods29, 97–109 (2003).
[CrossRef] [PubMed]

Caron, C. F. R.

Carrasco, S.

Chang-Qing, X.

K. Shinozaki, X. Chang-Qing, H. Sasaki, and T. Kamijoh, “A comparison of optical second-harmonic generation efficiency using Bessel and Gaussian beams in bulk crystals,” Opt. Commun.133, 300–304 (1997).
[CrossRef]

Charpak, S.

C. Lutz, T. S Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters” Nat. Methods5, 821–827 (2008).
[CrossRef]

Chen, S.-Y.

C. K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol.147, 19–30 (2004).
[CrossRef] [PubMed]

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B108, 827–840 (2004).
[CrossRef]

J.-X. Cheng and X. S. Xie, “Green’s function formulation for third harmonic generation microscopy,” J. Opt. Soc. Am. B19, 1604–1610 (2002).
[CrossRef]

Chlup, M.

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun.151, 207–211, (2008).
[CrossRef]

Chu, S.-W.

C. K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol.147, 19–30 (2004).
[CrossRef] [PubMed]

Combettes, L.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3, 47–53 (2006).
[CrossRef]

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8, 417–423 (2011).
[CrossRef] [PubMed]

Débarre, D.

N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
[CrossRef]

D. Débarre and E. Beaurepaire, “Quantitative characterization of biological liquids for third-harmonic generation microscopy,” Biophys. J.92, 603–612 (2007).
[CrossRef]

D. Débarre, N. Olivier, and E. Beaurepaire, “Signal epidetection in third-harmonic generation microscopy of turbid media,” Opt. Express15, 8913–8924 (2007).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3, 47–53 (2006).
[CrossRef]

D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy,” Opt. Lett.30, 2134–2136 (2005).
[CrossRef] [PubMed]

DeSars, V.

C. Lutz, T. S Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters” Nat. Methods5, 821–827 (2008).
[CrossRef]

Dholakia, K.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys.46, 15–28 (2005).
[CrossRef]

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Efficiency of second-harmonic generation with Bessel beams,” Phys. Rev. A60, 2438–2441 (1999).
[CrossRef]

DiGregorio, D. A.

C. Lutz, T. S Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters” Nat. Methods5, 821–827 (2008).
[CrossRef]

Duloquin, L.

N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987).
[CrossRef] [PubMed]

J. Durnin, “Exact solutions for nondiffracting beams. i. the scalar theory,” J. Opt. Soc. Am. A4, 651–654 (1987).
[CrossRef]

Durnin, J. E.

Eberly, J. H.

J. E. Durnin, J. J. Miceli, and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett.13, 79–80 (1988).
[CrossRef] [PubMed]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987).
[CrossRef] [PubMed]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997).
[CrossRef]

Emiliani, V.

C. Lutz, T. S Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters” Nat. Methods5, 821–827 (2008).
[CrossRef]

Fabre, A.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3, 47–53 (2006).
[CrossRef]

Fachima, R.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147, 3–11 (2004).
[CrossRef] [PubMed]

Fahrbach, F.O.

F.O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics4, 780–785, (2010).
[CrossRef]

Faure, E.

N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
[CrossRef]

Foreman, M. R.

Fourkas, J. T.

Furhapter, S.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9, 78 (2007).
[CrossRef]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8, 417–423 (2011).
[CrossRef] [PubMed]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8, 417–423 (2011).
[CrossRef] [PubMed]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8, 417–423 (2011).
[CrossRef] [PubMed]

Hashimoto, M.

Hashimoto, N.

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
[CrossRef]

Hell, S. W.

S. W. Hell, P. E. Henninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun.117, 20–24 (1995).
[CrossRef]

Henninen, P. E.

S. W. Hell, P. E. Henninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun.117, 20–24 (1995).
[CrossRef]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997).
[CrossRef]

Huang, H.

S. P. Tewari, H. Huang, and R. W. Boyd, “Theory of third-harmonic generation using bessel beams, and self-phase-matching,” Phys. Rev. A54, 2314–2325 (1996).
[CrossRef] [PubMed]

Huang, Z.

Jarutis, V.

Jesacher, A.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9, 78 (2007).
[CrossRef]

Juškaitis, R.

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun.268, 253–260 (2006).
[CrossRef]

Kamijoh, T.

K. Shinozaki, X. Chang-Qing, H. Sasaki, and T. Kamijoh, “A comparison of optical second-harmonic generation efficiency using Bessel and Gaussian beams in bulk crystals,” Opt. Commun.133, 300–304 (1997).
[CrossRef]

Krishnamachari, V. V.

V. V. Krishnamachari and E. O. Potma, “Multi-dimensional differential imaging with fe-cars microscopy,” Vib. Spectrosc.50, 10–14 (2009).
[CrossRef]

V. V. Krishnamachari and E. O. Potma, “Detecting lateral interfaces with focus-engineered coherent anti-stokes raman scattering microscopy,” J. Raman Spectr.39, 593–598 (2008).
[CrossRef]

Kuusisto, A.

S. W. Hell, P. E. Henninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun.117, 20–24 (1995).
[CrossRef]

Laurell, F.

Lin, C.-Y.

C. K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol.147, 19–30 (2004).
[CrossRef] [PubMed]

Liu, T.-M.

C. K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol.147, 19–30 (2004).
[CrossRef] [PubMed]

Lu, F.

Luengo-Oroz, M.

N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
[CrossRef]

Lutz, C.

C. Lutz, T. S Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters” Nat. Methods5, 821–827 (2008).
[CrossRef]

Masihzadeh, O.

Maurer, C.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9, 78 (2007).
[CrossRef]

McGloin, D.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys.46, 15–28 (2005).
[CrossRef]

Mermillod-Blondin, A.

Mertz, J.

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun.196, 325–330 (2001).
[CrossRef]

Miceli, J. J.

J. E. Durnin, J. J. Miceli, and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett.13, 79–80 (1988).
[CrossRef] [PubMed]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987).
[CrossRef] [PubMed]

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8, 417–423 (2011).
[CrossRef] [PubMed]

Millard, A. C.

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic imaging of endogenous structural proteins,” Methods29, 97–109 (2003).
[CrossRef] [PubMed]

Mohler, W.

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic imaging of endogenous structural proteins,” Methods29, 97–109 (2003).
[CrossRef] [PubMed]

Moreaux, L.

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun.196, 325–330 (2001).
[CrossRef]

Müller, M.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc.191, 266–274 (1998).
[CrossRef] [PubMed]

Munro, P. R. T.

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
[CrossRef]

Olivier, N.

N. Olivier, F. Aptel, K. Plamann, M-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express5, 5028–5040 (2010).
[CrossRef]

N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
[CrossRef]

N. Olivier, A. Mermillod-Blondin, C. B. Arnold, and E. Beaurepaire, “Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens,” Opt. Lett.34, 1684–1686 (2009).
[CrossRef] [PubMed]

N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express16, 14703–14715 (2008).
[CrossRef] [PubMed]

D. Débarre, N. Olivier, and E. Beaurepaire, “Signal epidetection in third-harmonic generation microscopy of turbid media,” Opt. Express15, 8913–8924 (2007).
[CrossRef] [PubMed]

Oron, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147, 3–11 (2004).
[CrossRef] [PubMed]

Otis, T. S

C. Lutz, T. S Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters” Nat. Methods5, 821–827 (2008).
[CrossRef]

Padgett, M. J.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Efficiency of second-harmonic generation with Bessel beams,” Phys. Rev. A60, 2438–2441 (1999).
[CrossRef]

Pašiškevicius, V.

Peet, V. E.

V. E. Peet and S. V. Shchemeljov, “Spectral and spatial characteristics of third-harmonic generation in conical light beams,” Phys. Rev. A67, 013801 (2003).
[CrossRef]

V. E. Peet and R. V. Tsubin, “Third-harmonic generation and multiphoton ionization in bessel beams,” Phys. Rev. A56, 1613–1620 (1997).
[CrossRef]

Pena, A.-M.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3, 47–53 (2006).
[CrossRef]

Peyriéras, N.

N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
[CrossRef]

Piskarskas, A.

Plamann, K.

N. Olivier, F. Aptel, K. Plamann, M-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express5, 5028–5040 (2010).
[CrossRef]

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8, 417–423 (2011).
[CrossRef] [PubMed]

Potma, E. O.

V. V. Krishnamachari and E. O. Potma, “Multi-dimensional differential imaging with fe-cars microscopy,” Vib. Spectrosc.50, 10–14 (2009).
[CrossRef]

V. V. Krishnamachari and E. O. Potma, “Detecting lateral interfaces with focus-engineered coherent anti-stokes raman scattering microscopy,” J. Raman Spectr.39, 593–598 (2008).
[CrossRef]

Potvliege, R. M.

Raz, S.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147, 3–11 (2004).
[CrossRef] [PubMed]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. Royal Soc. A253, 358–379 (1959).
[CrossRef]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9, 78 (2007).
[CrossRef]

Rohrbach, A.

F.O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics4, 780–785, (2010).
[CrossRef]

Ryosuke, K.

Saleh, B. E. A.

Santos, A.

N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
[CrossRef]

Sasaki, H.

K. Shinozaki, X. Chang-Qing, H. Sasaki, and T. Kamijoh, “A comparison of optical second-harmonic generation efficiency using Bessel and Gaussian beams in bulk crystals,” Opt. Commun.133, 300–304 (1997).
[CrossRef]

Savy, T.

N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
[CrossRef]

Schanne-Klein, M.-C.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3, 47–53 (2006).
[CrossRef]

Schanne-Klein, M-C.

N. Olivier, F. Aptel, K. Plamann, M-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express5, 5028–5040 (2010).
[CrossRef]

Schlup, P.

Schrader, M.

S. W. Hell, P. E. Henninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun.117, 20–24 (1995).
[CrossRef]

Shchemeljov, S. V.

V. E. Peet and S. V. Shchemeljov, “Spectral and spatial characteristics of third-harmonic generation in conical light beams,” Phys. Rev. A67, 013801 (2003).
[CrossRef]

Sheppard, C. J. R.

C. J. R. Sheppard, “The use of lenses with annular aperture in scanning optical microscopy,” Optik48, 329–334 (1977).

Sherif, S. S.

Shinozaki, K.

K. Shinozaki, X. Chang-Qing, H. Sasaki, and T. Kamijoh, “A comparison of optical second-harmonic generation efficiency using Bessel and Gaussian beams in bulk crystals,” Opt. Commun.133, 300–304 (1997).
[CrossRef]

Silberberg, Y.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147, 3–11 (2004).
[CrossRef] [PubMed]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic generation microscopy in biology,” Opt. Express5, 169–175 (1999).
[CrossRef] [PubMed]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997).
[CrossRef]

Simon, P.

F.O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics4, 780–785, (2010).
[CrossRef]

Smilgevicius, V.

Soini, E.

S. W. Hell, P. E. Henninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun.117, 20–24 (1995).
[CrossRef]

Solinas, X.

N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
[CrossRef]

Squier, J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc.191, 266–274 (1998).
[CrossRef] [PubMed]

Stabinis, A.

Sun, C. K.

C. K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol.147, 19–30 (2004).
[CrossRef] [PubMed]

Supatto, W.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3, 47–53 (2006).
[CrossRef]

D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy,” Opt. Lett.30, 2134–2136 (2005).
[CrossRef] [PubMed]

Tal, E.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147, 3–11 (2004).
[CrossRef] [PubMed]

Teich, M. C.

Tellefsen, J.

Tewari, S. P.

S. P. Tewari, H. Huang, and R. W. Boyd, “Theory of third-harmonic generation using bessel beams, and self-phase-matching,” Phys. Rev. A54, 2314–2325 (1996).
[CrossRef] [PubMed]

Tordjmann, T.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3, 47–53 (2006).
[CrossRef]

Török, P.

Tsai, H.-J.

C. K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol.147, 19–30 (2004).
[CrossRef] [PubMed]

Tsai, T.-H.

C. K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol.147, 19–30 (2004).
[CrossRef] [PubMed]

Tsubin, R. V.

V. E. Peet and R. V. Tsubin, “Third-harmonic generation and multiphoton ionization in bessel beams,” Phys. Rev. A56, 1613–1620 (1997).
[CrossRef]

Veilleux, I.

N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
[CrossRef]

Volkmer, A.

A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D: Appl. Phys.38, R59–R81 (2005).
[CrossRef]

Wagner, J.

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun.151, 207–211, (2008).
[CrossRef]

Wang, S.

Welford, W. T.

Wilson, K. R.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc.191, 266–274 (1998).
[CrossRef] [PubMed]

Wilson, T.

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun.268, 253–260 (2006).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. Royal Soc. A253, 358–379 (1959).
[CrossRef]

Xie, X. S.

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B108, 827–840 (2004).
[CrossRef]

J.-X. Cheng and X. S. Xie, “Green’s function formulation for third harmonic generation microscopy,” J. Opt. Soc. Am. B19, 1604–1610 (2002).
[CrossRef]

Yang, S.

S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. A10, 125103 (2008).
[CrossRef]

Yelin, D.

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147, 3–11 (2004).
[CrossRef] [PubMed]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic generation microscopy in biology,” Opt. Express5, 169–175 (1999).
[CrossRef] [PubMed]

Yoshiki, K.

Zhan, Q.

S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. A10, 125103 (2008).
[CrossRef]

Q. Zhan “Second-order tilted wave interpretation of the Gouy phase shift under high numerical aperture uniform illumination,” Optics Commun.242, 351–360 (2004).
[CrossRef]

Zheng, W.

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997).
[CrossRef]

Biophys. J. (1)

D. Débarre and E. Beaurepaire, “Quantitative characterization of biological liquids for third-harmonic generation microscopy,” Biophys. J.92, 603–612 (2007).
[CrossRef]

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys.46, 15–28 (2005).
[CrossRef]

J. Microsc. (1)

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc.191, 266–274 (1998).
[CrossRef] [PubMed]

J. Opt. A (1)

S. Yang and Q. Zhan, “Third-harmonic generation microscopy with tightly focused radial polarization,” J. Opt. A10, 125103 (2008).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

J. Phys. Chem. B (1)

J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B108, 827–840 (2004).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D: Appl. Phys.38, R59–R81 (2005).
[CrossRef]

J. Raman Spectr. (1)

V. V. Krishnamachari and E. O. Potma, “Detecting lateral interfaces with focus-engineered coherent anti-stokes raman scattering microscopy,” J. Raman Spectr.39, 593–598 (2008).
[CrossRef]

J. Struct. Biol. (2)

D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147, 3–11 (2004).
[CrossRef] [PubMed]

C. K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol.147, 19–30 (2004).
[CrossRef] [PubMed]

Methods (1)

W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic imaging of endogenous structural proteins,” Methods29, 97–109 (2003).
[CrossRef] [PubMed]

Nat. Methods (3)

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3, 47–53 (2006).
[CrossRef]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8, 417–423 (2011).
[CrossRef] [PubMed]

C. Lutz, T. S Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters” Nat. Methods5, 821–827 (2008).
[CrossRef]

Nat. Photonics (1)

F.O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics4, 780–785, (2010).
[CrossRef]

New J. Phys. (1)

C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys.9, 78 (2007).
[CrossRef]

Opt. Commun. (5)

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun.196, 325–330 (2001).
[CrossRef]

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun.151, 207–211, (2008).
[CrossRef]

S. W. Hell, P. E. Henninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun.117, 20–24 (1995).
[CrossRef]

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun.268, 253–260 (2006).
[CrossRef]

K. Shinozaki, X. Chang-Qing, H. Sasaki, and T. Kamijoh, “A comparison of optical second-harmonic generation efficiency using Bessel and Gaussian beams in bulk crystals,” Opt. Commun.133, 300–304 (1997).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

Optics Commun. (1)

Q. Zhan “Second-order tilted wave interpretation of the Gouy phase shift under high numerical aperture uniform illumination,” Optics Commun.242, 351–360 (2004).
[CrossRef]

Optik (1)

C. J. R. Sheppard, “The use of lenses with annular aperture in scanning optical microscopy,” Optik48, 329–334 (1977).

Phys. Rev. A (4)

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Efficiency of second-harmonic generation with Bessel beams,” Phys. Rev. A60, 2438–2441 (1999).
[CrossRef]

S. P. Tewari, H. Huang, and R. W. Boyd, “Theory of third-harmonic generation using bessel beams, and self-phase-matching,” Phys. Rev. A54, 2314–2325 (1996).
[CrossRef] [PubMed]

V. E. Peet and R. V. Tsubin, “Third-harmonic generation and multiphoton ionization in bessel beams,” Phys. Rev. A56, 1613–1620 (1997).
[CrossRef]

V. E. Peet and S. V. Shchemeljov, “Spectral and spatial characteristics of third-harmonic generation in conical light beams,” Phys. Rev. A67, 013801 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987).
[CrossRef] [PubMed]

Proc. Royal Soc. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. Royal Soc. A253, 358–379 (1959).
[CrossRef]

Science (1)

N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–971 (2010).
[CrossRef]

Vib. Spectrosc. (1)

V. V. Krishnamachari and E. O. Potma, “Multi-dimensional differential imaging with fe-cars microscopy,” Vib. Spectrosc.50, 10–14 (2009).
[CrossRef]

Other (1)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Geometry and notations used in this article. The exciting field depends on the two parameters θB and Δθ which define the transmission of the amplitude mask T(θ) at the back aperture of the objective, while the scattering direction is described by the angle θTHG and detection by the parameter θd and the maximum detection angle θd,Max.

Fig. 2
Fig. 2

Focused beams considered in this article. (A) Intensity in the focal region (xz plane) for different values of θB and Δθ. Field of view 20 × 3μm. (B) Axial and lateral intensity full width at half maximum (FWHM) as a function of NAB and ΔNA, and axial and lateral FWHM as a function of ΔNA for NAB = 0.95. (C) 2D Phase distribution with the propagation term removed for a Gaussian beam (top, NA=1) and a Bessel beam (bottom, NAB = 0.95 ± 0.05); (D) Phase distribution along the optical axis for the four beams represented in (A). Black: Gaussian NA=1.0; red: NAB = 0.8 ± 0.2; blue: NAB = 0.8 ± 0.05; purple: NAB = 0.95 ± 0.05. (Note: the phase oscillations away from the focal region come from assuming abrupt intensity variations at the objective pupil.) λ = 1.2μm, n=1.33.

Fig. 3
Fig. 3

(A) THG from an xy slab centered at z = 0 as a function of its width (e) with four different focal field distributions (Gaussian (NA=1), Gauss-Bessel intermediate (NAB = 0.8 ± 0.2), and Bessel (NAB = 0.8 ± 0.05 and NAB = 0.95 ± 0.05) and a detection NA of 1.33. Intensity normalization terms relative to the Gaussian beam with full detection NA are indicated between brackets. (B) Same conditions, except with a detection NA of 0.2, corresponding to the detection of near-axis emission only. (λ = 1.2μm, n=1.33.)

Fig. 4
Fig. 4

THG with Bessel beams: phase matching. (A) THG signal as a function of slab width e and scattering angle θTHG. (B) THG signal as a function of slab width e integrated over three different ranges of detection NA. (C) Schematics of the phase-matching mechanisms at the different scattering angles. Grey arrows represent fundamental wave-vectors, and color arrows represent harmonic wave-vectors.

Fig. 5
Fig. 5

THG from a slab with a Gaussian and a Bessel beam: influence of dispersion. (A) THG from a centered axial slab as a function of its width with a Gaussian beam (NA = 1.2), a detection NA of 1.33, and dispersion ranging from −0.03 to +0.03. Scale bar=3 μm. (B) Same as (A) but for a Bessel beam (NAB = 0.95 ± 0.05). (C) THG signal as a function of slab width and emission angle for a Bessel beam and Δn = 0 and +0.03. (λ = 1.2μm)

Fig. 6
Fig. 6

THG from an axially periodic structure. (A) Geometry considered. (B) THG as a function of the axial period of the sample for different excitation beams: Gauss (NA=0.9) and Bessel (0.8 ± 0.2, 0.8 ± 0.05, and 0.95 ± 0.05). Detection NA is 1.33. (C) THG signal as a function of spatial period e and emission angle. Integrating (C) over θTHG yields (B). (λ = 1.2μm, n=1.33.)

Fig. 7
Fig. 7

Probing organized media using Bessel beams: forward-scattered THG from a periodic structure with Bessel beams of NA ranging from 0.7 to 1.25 (A) Geometry. (B) normalized THG as a function of the axial period for Bessel beams with various NABNA = 0.05 except NAB = 1.25 where ΔNA = 0.02). Full line: NAdet = 0.2, dashed line : NAdet = 0.4.(C) THG as a function of slab width with NAB = 0.75 ± 0.05 and NAd,Max = 0.2. The first minimum corresponds to half the resonance period. (D) Same except NAB = 1.15 ± 0.05. (E) Expected on-axis spatial resonance period calculated with Eq. (11) (black), as well as expected resonance period for self-phase matching calculated with Eq. (12) (blue) and resonance period calculated as the period maximizing the THG signal in (B) (red) showing good agreement. (λ = 1.2μm, n=1.33.)

Fig. 8
Fig. 8

Probing organized media using Bessel beams: backward-scattered THG from a periodic structure with Bessel beams with NAB ranging from 0.7 to 1.25. (A) Geometry. (B) Angular phase matching conditions illustrated in the xy plane, and (C) Angular phase matching for the forward and backward THG in the xz plane. (D) Backward-THG as a function of the axial period for Bessel beams with various NABNA = 0.05, except for NAB = 1.25 where ΔNA = 0.02). (λ = 1.2μm, n=1.33.)

Fig. 9
Fig. 9

Summary: comparison of THG with a Bessel beam and a Gaussian beam of a similar axial extent. (A) Phase and intensity distribution of the two beams. Scale bar = 5μm. 1D plots show the phase (resp intensity) distribution along the z (resp. x and z) axis. Black, Gaussian beam; red, Bessel beam. (B) Normalized F-THG signal on a centered slab as a function of the width of the slab (Δn = 0), and (C) corresponding emission intensity as a function of the detection angle for e=3 μm. (D) Normalized F-THG as a function of axial period for both beams with NAd,Max = 0.2. (λ = 1.2μm, n=1.33.)

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

E f ( θ B ) J 0 ( k ρ sin ( θ B ) ) exp ( i k z cos θ B )
E f ( ρ , ϕ , z ) [ E x ( 1 ) ( θ B Δ θ , θ B + Δ θ ) + cos ( 2 ϕ ) E x ( 2 ) ( θ B Δ θ , θ B + Δ θ ) sin ( 2 ϕ ) E y ( θ B Δ θ , θ B + Δ θ ) E z ( θ B Δ θ , θ B + Δ θ ) ]
E x ( 1 ) ( θ B Δ θ , θ B + Δ θ ) = θ B Δ θ θ B + Δ θ cos ( θ ) sin ( θ ) ( 1 + cos θ ) e i k z cos ( θ ) J 0 ( k ρ sin θ ) d θ
E x ( 2 ) ( θ B Δ θ , θ B + Δ θ ) = θ B Δ θ θ B + Δ θ cos ( θ ) sin ( θ ) ( 1 cos θ ) e i k z cos ( θ ) J 2 ( k ρ sin θ ) d θ
E y ( θ B Δ θ , θ B + Δ θ ) = E x ( 2 ) ( θ B Δ θ , θ B + Δ θ )
E z ( θ B Δ θ , θ B + Δ θ ) = 2 i θ B Δ θ θ B + Δ θ cos ( θ ) sin 2 ( θ ) e i k z cos ( θ ) J 1 ( k ρ sin θ ) d θ
3 ( k ω ) = k 3 ω ,
3 ( k ω + k g , ω ) = k 3 ω + k g , 3 ω ,
l f w = π | Δ k | = π | 3 ( k ω + k g , ω ) ( k 3 ω + k g , 3 ω ) |
k g , ω N A B × Δ N A
k g , 3 ω N A T H G × Δ N A T H G N A B × Δ N A ,
I ( θ B , θ T H G ) = ρ J 0 3 ( k ω sin ( θ B ) ρ ) J 0 ( k 3 ω sin ( θ d ) ρ ) d ρ
l f w = π 2 k g
k g = k ( cos ( θ B ) 1 ) = 2 π n λ ( 1 cos ( arcsin ( N A B / n ) ) )
p = 2 l c = λ 3 n ( 1 cos ( arcsin ( N A B / n ) ) )
p = λ 3 n ( cos ( arcsin ( N A B / 3 n ) ) cos ( arcsin ( N A B / n ) ) )
p = λ 3 n ( 1 + cos ( arcsin ( N A B / n ) ) )
E ( θ B Δ θ , θ B + Δ θ , z , ρ = 0 ) = E x ( 1 ) ( θ B Δ θ , θ B + Δ θ , z , ρ = 0 ) = θ B Δ θ θ B + Δ θ cos ( θ ) sin ( θ ) ( 1 + cos θ ) e i k z cos ( θ ) d θ
E ( θ B Δ θ , θ B + Δ θ , z , ρ = 0 ) cos ( θ B ) sin ( θ B ) ( 1 + cos θ B ) θ B Δ θ θ B + Δ θ e i k z cos ( θ ) d θ
E ( θ B Δ θ , θ B + Δ θ , z , ρ = 0 ) e i k z cos ( θ B ) Δ θ + Δ θ e i k z θ sin ( θ B ) d θ e i k z cos ( θ B ) 2 Δ θ sinc ( k z sin ( θ B ) Δ θ )
e i k g z e i k z ( cos ( θ B ) cos ( θ B Δ θ ) ) e i k z sin ( θ B ) Δ θ ,
k g k sin ( θ B ) Δ θ N A B × Δ N A

Metrics