Abstract

We proposed and demonstrated a novel scheme of photonic ultra-wide-band (UWB) doublet pulse based on monolithic integration of tapered optical-direction coupler (TODC) and multiple-quantum-well (MQW) waveguide. TODC is formed by a top tapered MQW waveguide vertically integrating with an underneath passive waveguide. Through simultaneous field-driven optical index- and absorption- change in MQW, the partial optical coupling in TODC can be used to get a valley-shaped of optical transmission against voltage. Therefore, doublet-enveloped optical pulse can be realized by high-speed and high-efficient conversion of input electrical pulse. By just adjusting bias through MQW, 1530nm photonic UWB doublet optical pulse with 75-ps pulse width, below −41.3dBm power, 125% fractional bandwidth, and 7.5 GHz of −10dB bandwidth has been demonstrated, fitted into FCC requirement (3.1GHz~10.6GHz). Doublet-pulse data transmission generated in optical fiber is also performed for further characterization, exhibiting a successful 1.25Gb/s error-free transmission. It suggests such optoelectronic integration template can be applied for photonic UWB generation in fiber-based communications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007).
    [CrossRef]
  2. R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett.20(11), 945–947 (2008).
    [CrossRef]
  3. M. Hanawa, K. Nakamura, T. Tomita, K. Mori, A. Matsui, Y. Kanda, K. Nonaka, and N. Kitaoka, “An experimental demonstration of UWB-IR-over-fiber system,” Opt. Fiber Commun. Conf., 1–3 (2008).
  4. Fed. Commun. Commission, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Tech. Rep. ET-Docket 98–153, FCC02–48, Apr. (2002).
  5. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag.4(2), 36–47 (2003).
    [CrossRef]
  6. W. P. Lin and J. Y. Chen, “Implementation of a new ultrawide-band impulse system,” IEEE Photon. Technol. Lett.17(11), 2418–2420 (2005).
    [CrossRef]
  7. T. Kawanishi, T. Sakamoto, and M. Izutsu, “Ultra-wide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wireless Compon. Lett.15(3), 153–155 (2005).
    [CrossRef]
  8. Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett.42(22), 1304–1305 (2006).
    [CrossRef]
  9. E. Zhou, X. Yu, X. Zhang, W. Xue, Y. Yu, J. Mørk, and I. T. Monroy, “Photonic generation of ultrawideband monocycle and doublet pulses by using a semiconductor-optical-amplifier-based wavelength converter,” Opt. Lett.34(9), 1336–1338 (2009).
    [CrossRef] [PubMed]
  10. H. Shams, A. Kaszubowska-Anandarajah, P. Perry, P. Anandarajah, and L. P. Barry, “Electro-optical generation and distribution of ultrawideband signals based on the gain switching technique,” J. Opt. Commun. Netw.2(3), 122–130 (2010).
    [CrossRef]
  11. F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006).
    [CrossRef]
  12. Y. M. Chang, J. Lee, D. Koh, H. Chung, and J. H. Lee, “Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link,” J. Opt. Commun Netw.2(8), 600–608 (2010).
    [CrossRef]
  13. T.-H. Wu, J.-P. Wu, and Y.-J. Chiu, “Novel ultra-wideband (UWB) photonic generation through photodetection and cross-absorption modulation in a single electroabsorption modulator,” Opt. Express18(4), 3379–3384 (2010).
    [CrossRef] [PubMed]
  14. F.-Z. Lin, Y.-J. Chiu, S.-A. Tsai, and T.-H. Wu, “Laterally tapered undercut active waveguide fabricated by simple wet etching method for vertical waveguide directional coupler,” Opt. Express16(11), 7588–7594 (2008).
    [CrossRef] [PubMed]
  15. Y.-J. Chiu, T.-H. Wu, W.-C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett.17(10), 2065–2067 (2005).
    [CrossRef]
  16. T.-H. Wu, J.-P. Wu, and Y.-J. Chiu, “Field-driven all-optical wavelength converter using novel InGaAsP/InAlGaAs quantum wells,” Opt. Express19(27), 26645–26650 (2011).
    [CrossRef] [PubMed]

2011 (1)

2010 (3)

2009 (1)

2008 (2)

F.-Z. Lin, Y.-J. Chiu, S.-A. Tsai, and T.-H. Wu, “Laterally tapered undercut active waveguide fabricated by simple wet etching method for vertical waveguide directional coupler,” Opt. Express16(11), 7588–7594 (2008).
[CrossRef] [PubMed]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett.20(11), 945–947 (2008).
[CrossRef]

2007 (1)

2006 (2)

Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett.42(22), 1304–1305 (2006).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006).
[CrossRef]

2005 (3)

Y.-J. Chiu, T.-H. Wu, W.-C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett.17(10), 2065–2067 (2005).
[CrossRef]

W. P. Lin and J. Y. Chen, “Implementation of a new ultrawide-band impulse system,” IEEE Photon. Technol. Lett.17(11), 2418–2420 (2005).
[CrossRef]

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Ultra-wide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wireless Compon. Lett.15(3), 153–155 (2005).
[CrossRef]

2003 (1)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag.4(2), 36–47 (2003).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag.4(2), 36–47 (2003).
[CrossRef]

Alves, T.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett.20(11), 945–947 (2008).
[CrossRef]

Anandarajah, P.

Barry, L. P.

Beltran, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett.20(11), 945–947 (2008).
[CrossRef]

Bowers, J. E.

Y.-J. Chiu, T.-H. Wu, W.-C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett.17(10), 2065–2067 (2005).
[CrossRef]

Cartaxo, A.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett.20(11), 945–947 (2008).
[CrossRef]

Chang, Y. M.

Y. M. Chang, J. Lee, D. Koh, H. Chung, and J. H. Lee, “Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link,” J. Opt. Commun Netw.2(8), 600–608 (2010).
[CrossRef]

Chen, J. Y.

W. P. Lin and J. Y. Chen, “Implementation of a new ultrawide-band impulse system,” IEEE Photon. Technol. Lett.17(11), 2418–2420 (2005).
[CrossRef]

Cheng, W.-C.

Y.-J. Chiu, T.-H. Wu, W.-C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett.17(10), 2065–2067 (2005).
[CrossRef]

Chiu, Y.-J.

Chung, H.

Y. M. Chang, J. Lee, D. Koh, H. Chung, and J. H. Lee, “Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link,” J. Opt. Commun Netw.2(8), 600–608 (2010).
[CrossRef]

Izutsu, M.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Ultra-wide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wireless Compon. Lett.15(3), 153–155 (2005).
[CrossRef]

Kaszubowska-Anandarajah, A.

Kawanishi, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Ultra-wide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wireless Compon. Lett.15(3), 153–155 (2005).
[CrossRef]

Koh, D.

Y. M. Chang, J. Lee, D. Koh, H. Chung, and J. H. Lee, “Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link,” J. Opt. Commun Netw.2(8), 600–608 (2010).
[CrossRef]

Lee, J.

Y. M. Chang, J. Lee, D. Koh, H. Chung, and J. H. Lee, “Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link,” J. Opt. Commun Netw.2(8), 600–608 (2010).
[CrossRef]

Lee, J. H.

Y. M. Chang, J. Lee, D. Koh, H. Chung, and J. H. Lee, “Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link,” J. Opt. Commun Netw.2(8), 600–608 (2010).
[CrossRef]

Lin, F. J.

Y.-J. Chiu, T.-H. Wu, W.-C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett.17(10), 2065–2067 (2005).
[CrossRef]

Lin, F.-Z.

Lin, W. P.

W. P. Lin and J. Y. Chen, “Implementation of a new ultrawide-band impulse system,” IEEE Photon. Technol. Lett.17(11), 2418–2420 (2005).
[CrossRef]

Llorente, R.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett.20(11), 945–947 (2008).
[CrossRef]

Marti, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett.20(11), 945–947 (2008).
[CrossRef]

Monroy, I. T.

Morant, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett.20(11), 945–947 (2008).
[CrossRef]

Mørk, J.

Perez, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett.20(11), 945–947 (2008).
[CrossRef]

Perry, P.

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag.4(2), 36–47 (2003).
[CrossRef]

Sakamoto, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Ultra-wide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wireless Compon. Lett.15(3), 153–155 (2005).
[CrossRef]

Shams, H.

Tsai, S.-A.

Wang, Q.

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007).
[CrossRef]

Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett.42(22), 1304–1305 (2006).
[CrossRef]

Wu, J.-P.

Wu, T.-H.

Xue, W.

Yao, J.

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006).
[CrossRef]

Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett.42(22), 1304–1305 (2006).
[CrossRef]

Yu, X.

Yu, Y.

Zeng, F.

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006).
[CrossRef]

Zhang, X.

Zhou, E.

Electron. Lett. (1)

Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett.42(22), 1304–1305 (2006).
[CrossRef]

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag.4(2), 36–47 (2003).
[CrossRef]

IEEE Microw. Wireless Compon. Lett. (1)

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Ultra-wide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wireless Compon. Lett.15(3), 153–155 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006).
[CrossRef]

W. P. Lin and J. Y. Chen, “Implementation of a new ultrawide-band impulse system,” IEEE Photon. Technol. Lett.17(11), 2418–2420 (2005).
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett.20(11), 945–947 (2008).
[CrossRef]

Y.-J. Chiu, T.-H. Wu, W.-C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region,” IEEE Photon. Technol. Lett.17(10), 2065–2067 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Commun Netw. (1)

Y. M. Chang, J. Lee, D. Koh, H. Chung, and J. H. Lee, “Ultra-wideband doublet pulse generation based on semiconductor electroabsorption modulator and its distribution over a fiber/wireless link,” J. Opt. Commun Netw.2(8), 600–608 (2010).
[CrossRef]

J. Opt. Commun. Netw. (1)

Opt. Express (3)

Opt. Lett. (1)

Other (2)

M. Hanawa, K. Nakamura, T. Tomita, K. Mori, A. Matsui, Y. Kanda, K. Nonaka, and N. Kitaoka, “An experimental demonstration of UWB-IR-over-fiber system,” Opt. Fiber Commun. Conf., 1–3 (2008).

Fed. Commun. Commission, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Tech. Rep. ET-Docket 98–153, FCC02–48, Apr. (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of TODC-integrated EAM structure. Optical power is coupled from PW (point “A”) and measured at point “C” (underneath EAM waveguide).

Fig. 2
Fig. 2

(a) the calculated mode effective index of tapered active AW against AW width and the underneath PW, (b) the calculated optical absorption (EA effect) against bias for MQW of AW at wavelengths, 1510, 1530, and 1550nm, (c) the extracted index change (EO effect) from 0V bias through Kramers-Kronig relation, (d) as the light is coupled from PW, the converted efficiency into AW along the propagation distance of TODC and EAM waveguide.

Fig. 3
Fig. 3

D.C. and A.C. data transmission experimental setup, where the electrical data is based on a 10Gb/s super-Gaussian pattern dropped with 1/8 fractional frequency.

Fig. 4
Fig. 4

(a) the measured valley-shaped optical transmission (from point “A” to point “C” in Fig. 1) against with bias, where the top insert is the optical transmission of single EAM waveguide against voltage, (b) the schematic diagram of doublet pulse generation through EO conversion at 1530nm, where the transmission curve is the linear scale plot in Fig. 4(a).

Fig. 5
Fig. 5

the waveforms and spectrum of doublet UWB pulses with the bias of EAM 5.2V, 5.6V, and 6V. The line in the spectrum is the F.C.C. regulation.

Fig. 6
Fig. 6

(a) 1.25Gb/s eye diagram of doublet UWB pulse train, and (b) BER measurement.

Metrics