Abstract

This work presents time-resolved images of femtosecond-laser-induced melt dynamics in 60 nm gold films on glass substrates. Melt dynamics induced by laser radiation with focus diameters of 6 μm and 8 μm (FWHM) at constant laser fluence is investigated with a temporal resolution of 10 ns. In both cases, the formation of the microbumps and gold jets takes at least 250 ns. It is shown that the formation process can be compared to jetting behavior induced by cavitation bubbles near a free liquid surface. This is confirmed by SEM illustrating a re-entrant spike through a hole in the microbump.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A79, 879–881 (2004).
    [CrossRef]
  2. J. Koch, F. Korte, C. Fallnich, and B. N. Chichkov, “Direct-write subwavelength structuring with femtosecond laser pulses,” Opt. Eng.5, 051103 (2005).
    [CrossRef]
  3. J. Koch, F. Korte, T. Bauer, C. Fallnich, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A81, 325–328 (2005).
    [CrossRef]
  4. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A94, 221–230 (2008).
    [CrossRef]
  5. Y. Nakata, T. Okada, and M. Maeda, “Nano-sized hollow bump array generated by single femtosecond laser pulse,” Jpn. J. Appl. Phys.42, L1452–L1454 (2003).
    [CrossRef]
  6. Y. Nakata, N. Miyanaga, and T. Okada, “Effect of pulse width and fluence of femtosecond laser on the size of nanobump array,” Appl. Surf. Sci.253, 6555–6557 (2007).
    [CrossRef]
  7. Y. Nakata, T. Hiromoto, and N. Miyanaga, “Mesoscopic nanomaterials generated by interfering femtosecond laser processing,” Appl. Phys. A101, 471–474 (2010).
    [CrossRef]
  8. D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86, 244103 (2005).
    [CrossRef]
  9. J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys. A95, 635–638 (2009).
    [CrossRef]
  10. S. Anisimov, B. Kapeliovich, and T. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys.-JETP39, 375–377 (1974).
  11. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
    [CrossRef]
  12. D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser- solid interaction in the femtosecond time regime,” Appl. Surf. Sci.109/110, 1–10 (1997).
    [CrossRef]
  13. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express17, 18820–18825 (2009).
    [CrossRef]
  14. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2d and 3d metal nanoparticle structures and arrays,” Opt. Express18, 21198–21203 (2010).
    [CrossRef] [PubMed]
  15. A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A106, 479–487 (2012).
    [CrossRef]
  16. D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B68, 064114 (2003).
    [CrossRef]
  17. D. S. Ivanov and L. V. Zhigilei, “Effect of pressure relaxation on the mechanisms of short-pulse laser melting,” Phys. Rev. Lett.91, 105701 (2003).
    [CrossRef] [PubMed]
  18. D. S. Ivanov, B. Rethfeld, G. M. O’Connor, T. J. Glynn, A. N. Volkov, and L. V. Zhigilei, “The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films,” Appl. Phys. A92, 791–796 (2008).
    [CrossRef]
  19. D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010).
    [CrossRef]
  20. Y. P. Meshcheryakov and N. M. Bulgakova, “Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation,” Appl. Phys. A82, 363–368 (2006).
    [CrossRef]
  21. N. Seifert and G. Betz, “Computer simulations of laser- induced ejection of droplets,” Appl. Surf. Sci.133, 189–194 (1998).
    [CrossRef]
  22. D. A. Willis and V. Grosu, “The effect of melting-induced volumetric expansion on initiation of laser-induced forward transfer,” Appl. Surf. Sci.253, 4759–4763 (2007).
    [CrossRef]
  23. J. P. Moening, D. G. Georgiev, and J. G. Lawrence, “Focused ion beam and electron microscopy characterization of nanosharp tips and microbumps on silicon and metal thin films formed via localized single-pulse laser irradiation,” J. Appl. Phys.109, 014304 (2011).
    [CrossRef]
  24. J. P. Moening, “Formation of nano-sharp tips and microbumps on silicon and metal films by localized single-pulse laser irradiation,” Ph.D. thesis, The University of Toledo (2010).
  25. S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys. A101, 309–312 (2010).
    [CrossRef]
  26. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science302, 1382–1385 (2003).
    [CrossRef] [PubMed]
  27. T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett.96, 055001 (2006).
    [CrossRef] [PubMed]
  28. I. Mingareev and A. Horn, “Time-resolved investigations of plasma and melt ejections in metals by pump-probe shadowgrpahy,” Appl. Phys. A92, 917–920 (2008).
    [CrossRef]
  29. M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express20, 10330–10338 (2012).
    [CrossRef] [PubMed]
  30. D. von der Linde and K. Sokolowski-Tinten, “Physical mechanisms of short pulse laser ablation,” Appl. Surf. Sci.154–155, 1–10 (2000).
    [CrossRef]
  31. C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A103, 271–277 (2011).
    [CrossRef]
  32. M. Gruene, C. Unger, L. Koch, A. Deiwick, and B. Chichkov, “Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting,” Biomed. Eng. Online10:19 (2011).
    [CrossRef] [PubMed]
  33. J. Koch, E. Fadeeva, M. Engelbracht, C. Ruffert, H. H. Gaatzen, A. Ostendorf, and B. N. Chichkov, “Maskless nonlinear lithography with femtosecond laser pulses,” Appl. Phys. A82, 23–26 (2006).
    [CrossRef]
  34. N. Chigier and R. Reitz, Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena (AIAA, 1996), chap. Regimes of Jet Breakup and Breakup Mechanisms (Physical Aspects), 109–135.
  35. P. O’Rourke and A. Amdsen, “The tab method for numerical calculations of spray droplet breakup,” Society of Automotive Engineers, Paper 872089 (1987).
  36. N. Seifert, G. Betz, and W. Husinsky, “Droplet formation on metallic surfaces during low-fluence laser irradiation,” Appl. Surf. Sci.103, 63–70 (1996).
    [CrossRef]
  37. I. Egry, G. Lohoefer, and G. Jacobs, “Surface tension of liquid metals: Results from measurements on ground and in space,” Phys. Rev. Lett.75, 4043–4046 (1955).
    [CrossRef]
  38. A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28, 295–313 (2004).
    [CrossRef]
  39. P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89, 8225–8237 (2001).
    [CrossRef]
  40. B. S. Mitchell, An Introduction to Materials Engineering and Science for Chemical and Materials Engineers (John Wiley & Sons, 2004).
  41. H. Vogel, Gerthsen Physik (Springer, 1995).
  42. M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved dynamics of laser-induced micro-jets from thin liquid films,” Microfluid. Nanofluid.11, 199–207 (2011).
    [CrossRef]

2012 (2)

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A106, 479–487 (2012).
[CrossRef]

M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express20, 10330–10338 (2012).
[CrossRef] [PubMed]

2011 (4)

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A103, 271–277 (2011).
[CrossRef]

M. Gruene, C. Unger, L. Koch, A. Deiwick, and B. Chichkov, “Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting,” Biomed. Eng. Online10:19 (2011).
[CrossRef] [PubMed]

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved dynamics of laser-induced micro-jets from thin liquid films,” Microfluid. Nanofluid.11, 199–207 (2011).
[CrossRef]

J. P. Moening, D. G. Georgiev, and J. G. Lawrence, “Focused ion beam and electron microscopy characterization of nanosharp tips and microbumps on silicon and metal thin films formed via localized single-pulse laser irradiation,” J. Appl. Phys.109, 014304 (2011).
[CrossRef]

2010 (4)

S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys. A101, 309–312 (2010).
[CrossRef]

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010).
[CrossRef]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2d and 3d metal nanoparticle structures and arrays,” Opt. Express18, 21198–21203 (2010).
[CrossRef] [PubMed]

Y. Nakata, T. Hiromoto, and N. Miyanaga, “Mesoscopic nanomaterials generated by interfering femtosecond laser processing,” Appl. Phys. A101, 471–474 (2010).
[CrossRef]

2009 (2)

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express17, 18820–18825 (2009).
[CrossRef]

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys. A95, 635–638 (2009).
[CrossRef]

2008 (3)

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A94, 221–230 (2008).
[CrossRef]

D. S. Ivanov, B. Rethfeld, G. M. O’Connor, T. J. Glynn, A. N. Volkov, and L. V. Zhigilei, “The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films,” Appl. Phys. A92, 791–796 (2008).
[CrossRef]

I. Mingareev and A. Horn, “Time-resolved investigations of plasma and melt ejections in metals by pump-probe shadowgrpahy,” Appl. Phys. A92, 917–920 (2008).
[CrossRef]

2007 (2)

D. A. Willis and V. Grosu, “The effect of melting-induced volumetric expansion on initiation of laser-induced forward transfer,” Appl. Surf. Sci.253, 4759–4763 (2007).
[CrossRef]

Y. Nakata, N. Miyanaga, and T. Okada, “Effect of pulse width and fluence of femtosecond laser on the size of nanobump array,” Appl. Surf. Sci.253, 6555–6557 (2007).
[CrossRef]

2006 (3)

Y. P. Meshcheryakov and N. M. Bulgakova, “Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation,” Appl. Phys. A82, 363–368 (2006).
[CrossRef]

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett.96, 055001 (2006).
[CrossRef] [PubMed]

J. Koch, E. Fadeeva, M. Engelbracht, C. Ruffert, H. H. Gaatzen, A. Ostendorf, and B. N. Chichkov, “Maskless nonlinear lithography with femtosecond laser pulses,” Appl. Phys. A82, 23–26 (2006).
[CrossRef]

2005 (3)

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86, 244103 (2005).
[CrossRef]

J. Koch, F. Korte, C. Fallnich, and B. N. Chichkov, “Direct-write subwavelength structuring with femtosecond laser pulses,” Opt. Eng.5, 051103 (2005).
[CrossRef]

J. Koch, F. Korte, T. Bauer, C. Fallnich, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A81, 325–328 (2005).
[CrossRef]

2004 (2)

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A79, 879–881 (2004).
[CrossRef]

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28, 295–313 (2004).
[CrossRef]

2003 (4)

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science302, 1382–1385 (2003).
[CrossRef] [PubMed]

Y. Nakata, T. Okada, and M. Maeda, “Nano-sized hollow bump array generated by single femtosecond laser pulse,” Jpn. J. Appl. Phys.42, L1452–L1454 (2003).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B68, 064114 (2003).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Effect of pressure relaxation on the mechanisms of short-pulse laser melting,” Phys. Rev. Lett.91, 105701 (2003).
[CrossRef] [PubMed]

2001 (1)

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89, 8225–8237 (2001).
[CrossRef]

1998 (1)

N. Seifert and G. Betz, “Computer simulations of laser- induced ejection of droplets,” Appl. Surf. Sci.133, 189–194 (1998).
[CrossRef]

1997 (1)

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser- solid interaction in the femtosecond time regime,” Appl. Surf. Sci.109/110, 1–10 (1997).
[CrossRef]

1996 (2)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
[CrossRef]

N. Seifert, G. Betz, and W. Husinsky, “Droplet formation on metallic surfaces during low-fluence laser irradiation,” Appl. Surf. Sci.103, 63–70 (1996).
[CrossRef]

1974 (1)

S. Anisimov, B. Kapeliovich, and T. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys.-JETP39, 375–377 (1974).

1955 (1)

I. Egry, G. Lohoefer, and G. Jacobs, “Surface tension of liquid metals: Results from measurements on ground and in space,” Phys. Rev. Lett.75, 4043–4046 (1955).
[CrossRef]

Amdsen, A.

P. O’Rourke and A. Amdsen, “The tab method for numerical calculations of spray droplet breakup,” Society of Automotive Engineers, Paper 872089 (1987).

Anisimov, S.

S. Anisimov, B. Kapeliovich, and T. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys.-JETP39, 375–377 (1974).

Ao, T.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett.96, 055001 (2006).
[CrossRef] [PubMed]

Arnold, C. B.

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved dynamics of laser-induced micro-jets from thin liquid films,” Microfluid. Nanofluid.11, 199–207 (2011).
[CrossRef]

Bauer, T.

J. Koch, F. Korte, T. Bauer, C. Fallnich, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A81, 325–328 (2005).
[CrossRef]

Betz, G.

N. Seifert and G. Betz, “Computer simulations of laser- induced ejection of droplets,” Appl. Surf. Sci.133, 189–194 (1998).
[CrossRef]

N. Seifert, G. Betz, and W. Husinsky, “Droplet formation on metallic surfaces during low-fluence laser irradiation,” Appl. Surf. Sci.103, 63–70 (1996).
[CrossRef]

Bialkowski, J.

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser- solid interaction in the femtosecond time regime,” Appl. Surf. Sci.109/110, 1–10 (1997).
[CrossRef]

Blake, J. R.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28, 295–313 (2004).
[CrossRef]

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89, 8225–8237 (2001).
[CrossRef]

Boneberg, J.

S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys. A101, 309–312 (2010).
[CrossRef]

Brown, M. S.

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved dynamics of laser-induced micro-jets from thin liquid films,” Microfluid. Nanofluid.11, 199–207 (2011).
[CrossRef]

Bulgakova, N. M.

Y. P. Meshcheryakov and N. M. Bulgakova, “Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation,” Appl. Phys. A82, 363–368 (2006).
[CrossRef]

Chichkov, B.

M. Gruene, C. Unger, L. Koch, A. Deiwick, and B. Chichkov, “Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting,” Biomed. Eng. Online10:19 (2011).
[CrossRef] [PubMed]

Chichkov, B. N.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A106, 479–487 (2012).
[CrossRef]

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A103, 271–277 (2011).
[CrossRef]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2d and 3d metal nanoparticle structures and arrays,” Opt. Express18, 21198–21203 (2010).
[CrossRef] [PubMed]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express17, 18820–18825 (2009).
[CrossRef]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A94, 221–230 (2008).
[CrossRef]

J. Koch, E. Fadeeva, M. Engelbracht, C. Ruffert, H. H. Gaatzen, A. Ostendorf, and B. N. Chichkov, “Maskless nonlinear lithography with femtosecond laser pulses,” Appl. Phys. A82, 23–26 (2006).
[CrossRef]

J. Koch, F. Korte, T. Bauer, C. Fallnich, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A81, 325–328 (2005).
[CrossRef]

J. Koch, F. Korte, C. Fallnich, and B. N. Chichkov, “Direct-write subwavelength structuring with femtosecond laser pulses,” Opt. Eng.5, 051103 (2005).
[CrossRef]

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A79, 879–881 (2004).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
[CrossRef]

Chigier, N.

N. Chigier and R. Reitz, Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena (AIAA, 1996), chap. Regimes of Jet Breakup and Breakup Mechanisms (Physical Aspects), 109–135.

Cox, E.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28, 295–313 (2004).
[CrossRef]

Deiwick, A.

M. Gruene, C. Unger, L. Koch, A. Deiwick, and B. Chichkov, “Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting,” Biomed. Eng. Online10:19 (2011).
[CrossRef] [PubMed]

Domke, M.

Dwyer, J. R.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science302, 1382–1385 (2003).
[CrossRef] [PubMed]

Egry, I.

I. Egry, G. Lohoefer, and G. Jacobs, “Surface tension of liquid metals: Results from measurements on ground and in space,” Phys. Rev. Lett.75, 4043–4046 (1955).
[CrossRef]

Engelbracht, M.

J. Koch, E. Fadeeva, M. Engelbracht, C. Ruffert, H. H. Gaatzen, A. Ostendorf, and B. N. Chichkov, “Maskless nonlinear lithography with femtosecond laser pulses,” Appl. Phys. A82, 23–26 (2006).
[CrossRef]

Fadeeva, E.

J. Koch, E. Fadeeva, M. Engelbracht, C. Ruffert, H. H. Gaatzen, A. Ostendorf, and B. N. Chichkov, “Maskless nonlinear lithography with femtosecond laser pulses,” Appl. Phys. A82, 23–26 (2006).
[CrossRef]

Fallnich, C.

J. Koch, F. Korte, T. Bauer, C. Fallnich, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A81, 325–328 (2005).
[CrossRef]

J. Koch, F. Korte, C. Fallnich, and B. N. Chichkov, “Direct-write subwavelength structuring with femtosecond laser pulses,” Opt. Eng.5, 051103 (2005).
[CrossRef]

Gaatzen, H. H.

J. Koch, E. Fadeeva, M. Engelbracht, C. Ruffert, H. H. Gaatzen, A. Ostendorf, and B. N. Chichkov, “Maskless nonlinear lithography with femtosecond laser pulses,” Appl. Phys. A82, 23–26 (2006).
[CrossRef]

Georgiev, D. G.

J. P. Moening, D. G. Georgiev, and J. G. Lawrence, “Focused ion beam and electron microscopy characterization of nanosharp tips and microbumps on silicon and metal thin films formed via localized single-pulse laser irradiation,” J. Appl. Phys.109, 014304 (2011).
[CrossRef]

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys. A95, 635–638 (2009).
[CrossRef]

Glynn, T. J.

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010).
[CrossRef]

D. S. Ivanov, B. Rethfeld, G. M. O’Connor, T. J. Glynn, A. N. Volkov, and L. V. Zhigilei, “The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films,” Appl. Phys. A92, 791–796 (2008).
[CrossRef]

Grosu, V.

D. A. Willis and V. Grosu, “The effect of melting-induced volumetric expansion on initiation of laser-induced forward transfer,” Appl. Surf. Sci.253, 4759–4763 (2007).
[CrossRef]

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86, 244103 (2005).
[CrossRef]

Gruene, M.

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A103, 271–277 (2011).
[CrossRef]

M. Gruene, C. Unger, L. Koch, A. Deiwick, and B. Chichkov, “Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting,” Biomed. Eng. Online10:19 (2011).
[CrossRef] [PubMed]

Hiromoto, T.

Y. Nakata, T. Hiromoto, and N. Miyanaga, “Mesoscopic nanomaterials generated by interfering femtosecond laser processing,” Appl. Phys. A101, 471–474 (2010).
[CrossRef]

Horn, A.

I. Mingareev and A. Horn, “Time-resolved investigations of plasma and melt ejections in metals by pump-probe shadowgrpahy,” Appl. Phys. A92, 917–920 (2008).
[CrossRef]

Huber, H. P.

Husinsky, W.

N. Seifert, G. Betz, and W. Husinsky, “Droplet formation on metallic surfaces during low-fluence laser irradiation,” Appl. Surf. Sci.103, 63–70 (1996).
[CrossRef]

Ivanov, D. S.

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010).
[CrossRef]

D. S. Ivanov, B. Rethfeld, G. M. O’Connor, T. J. Glynn, A. N. Volkov, and L. V. Zhigilei, “The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films,” Appl. Phys. A92, 791–796 (2008).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Effect of pressure relaxation on the mechanisms of short-pulse laser melting,” Phys. Rev. Lett.91, 105701 (2003).
[CrossRef] [PubMed]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B68, 064114 (2003).
[CrossRef]

Jacobs, G.

I. Egry, G. Lohoefer, and G. Jacobs, “Surface tension of liquid metals: Results from measurements on ground and in space,” Phys. Rev. Lett.75, 4043–4046 (1955).
[CrossRef]

Jordan, R. E.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science302, 1382–1385 (2003).
[CrossRef] [PubMed]

Kapeliovich, B.

S. Anisimov, B. Kapeliovich, and T. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys.-JETP39, 375–377 (1974).

Kattamis, N. T.

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved dynamics of laser-induced micro-jets from thin liquid films,” Microfluid. Nanofluid.11, 199–207 (2011).
[CrossRef]

Kiyan, R.

Koch, J.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A106, 479–487 (2012).
[CrossRef]

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A103, 271–277 (2011).
[CrossRef]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express17, 18820–18825 (2009).
[CrossRef]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A94, 221–230 (2008).
[CrossRef]

J. Koch, E. Fadeeva, M. Engelbracht, C. Ruffert, H. H. Gaatzen, A. Ostendorf, and B. N. Chichkov, “Maskless nonlinear lithography with femtosecond laser pulses,” Appl. Phys. A82, 23–26 (2006).
[CrossRef]

J. Koch, F. Korte, T. Bauer, C. Fallnich, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A81, 325–328 (2005).
[CrossRef]

J. Koch, F. Korte, C. Fallnich, and B. N. Chichkov, “Direct-write subwavelength structuring with femtosecond laser pulses,” Opt. Eng.5, 051103 (2005).
[CrossRef]

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A79, 879–881 (2004).
[CrossRef]

Koch, L.

M. Gruene, C. Unger, L. Koch, A. Deiwick, and B. Chichkov, “Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting,” Biomed. Eng. Online10:19 (2011).
[CrossRef] [PubMed]

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A103, 271–277 (2011).
[CrossRef]

Kodama, T.

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89, 8225–8237 (2001).
[CrossRef]

Korte, F.

J. Koch, F. Korte, C. Fallnich, and B. N. Chichkov, “Direct-write subwavelength structuring with femtosecond laser pulses,” Opt. Eng.5, 051103 (2005).
[CrossRef]

J. Koch, F. Korte, T. Bauer, C. Fallnich, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A81, 325–328 (2005).
[CrossRef]

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A79, 879–881 (2004).
[CrossRef]

Kuznetsov, A. I.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A106, 479–487 (2012).
[CrossRef]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2d and 3d metal nanoparticle structures and arrays,” Opt. Express18, 21198–21203 (2010).
[CrossRef] [PubMed]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express17, 18820–18825 (2009).
[CrossRef]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A94, 221–230 (2008).
[CrossRef]

Lawrence, J. G.

J. P. Moening, D. G. Georgiev, and J. G. Lawrence, “Focused ion beam and electron microscopy characterization of nanosharp tips and microbumps on silicon and metal thin films formed via localized single-pulse laser irradiation,” J. Appl. Phys.109, 014304 (2011).
[CrossRef]

Lee, E.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett.96, 055001 (2006).
[CrossRef] [PubMed]

Leiderer, P.

S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys. A101, 309–312 (2010).
[CrossRef]

Lin, Z.

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010).
[CrossRef]

Lohoefer, G.

I. Egry, G. Lohoefer, and G. Jacobs, “Surface tension of liquid metals: Results from measurements on ground and in space,” Phys. Rev. Lett.75, 4043–4046 (1955).
[CrossRef]

Maeda, M.

Y. Nakata, T. Okada, and M. Maeda, “Nano-sized hollow bump array generated by single femtosecond laser pulse,” Jpn. J. Appl. Phys.42, L1452–L1454 (2003).
[CrossRef]

Meshcheryakov, Y. P.

Y. P. Meshcheryakov and N. M. Bulgakova, “Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation,” Appl. Phys. A82, 363–368 (2006).
[CrossRef]

Miller, R. J. D.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science302, 1382–1385 (2003).
[CrossRef] [PubMed]

Mingareev, I.

I. Mingareev and A. Horn, “Time-resolved investigations of plasma and melt ejections in metals by pump-probe shadowgrpahy,” Appl. Phys. A92, 917–920 (2008).
[CrossRef]

Mitchell, B. S.

B. S. Mitchell, An Introduction to Materials Engineering and Science for Chemical and Materials Engineers (John Wiley & Sons, 2004).

Miyanaga, N.

Y. Nakata, T. Hiromoto, and N. Miyanaga, “Mesoscopic nanomaterials generated by interfering femtosecond laser processing,” Appl. Phys. A101, 471–474 (2010).
[CrossRef]

Y. Nakata, N. Miyanaga, and T. Okada, “Effect of pulse width and fluence of femtosecond laser on the size of nanobump array,” Appl. Surf. Sci.253, 6555–6557 (2007).
[CrossRef]

Moening, J. P.

J. P. Moening, D. G. Georgiev, and J. G. Lawrence, “Focused ion beam and electron microscopy characterization of nanosharp tips and microbumps on silicon and metal thin films formed via localized single-pulse laser irradiation,” J. Appl. Phys.109, 014304 (2011).
[CrossRef]

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys. A95, 635–638 (2009).
[CrossRef]

J. P. Moening, “Formation of nano-sharp tips and microbumps on silicon and metal films by localized single-pulse laser irradiation,” Ph.D. thesis, The University of Toledo (2010).

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
[CrossRef]

Nakata, Y.

Y. Nakata, T. Hiromoto, and N. Miyanaga, “Mesoscopic nanomaterials generated by interfering femtosecond laser processing,” Appl. Phys. A101, 471–474 (2010).
[CrossRef]

Y. Nakata, N. Miyanaga, and T. Okada, “Effect of pulse width and fluence of femtosecond laser on the size of nanobump array,” Appl. Surf. Sci.253, 6555–6557 (2007).
[CrossRef]

Y. Nakata, T. Okada, and M. Maeda, “Nano-sized hollow bump array generated by single femtosecond laser pulse,” Jpn. J. Appl. Phys.42, L1452–L1454 (2003).
[CrossRef]

Ng, A.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett.96, 055001 (2006).
[CrossRef] [PubMed]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
[CrossRef]

O’Connor, G. M.

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010).
[CrossRef]

D. S. Ivanov, B. Rethfeld, G. M. O’Connor, T. J. Glynn, A. N. Volkov, and L. V. Zhigilei, “The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films,” Appl. Phys. A92, 791–796 (2008).
[CrossRef]

O’Rourke, P.

P. O’Rourke and A. Amdsen, “The tab method for numerical calculations of spray droplet breakup,” Society of Automotive Engineers, Paper 872089 (1987).

Okada, T.

Y. Nakata, N. Miyanaga, and T. Okada, “Effect of pulse width and fluence of femtosecond laser on the size of nanobump array,” Appl. Surf. Sci.253, 6555–6557 (2007).
[CrossRef]

Y. Nakata, T. Okada, and M. Maeda, “Nano-sized hollow bump array generated by single femtosecond laser pulse,” Jpn. J. Appl. Phys.42, L1452–L1454 (2003).
[CrossRef]

Ostendorf, A.

J. Koch, E. Fadeeva, M. Engelbracht, C. Ruffert, H. H. Gaatzen, A. Ostendorf, and B. N. Chichkov, “Maskless nonlinear lithography with femtosecond laser pulses,” Appl. Phys. A82, 23–26 (2006).
[CrossRef]

Otto, S. R.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28, 295–313 (2004).
[CrossRef]

Pearson, A.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28, 295–313 (2004).
[CrossRef]

Perel’man, T.

S. Anisimov, B. Kapeliovich, and T. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys.-JETP39, 375–377 (1974).

Ping, Y.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett.96, 055001 (2006).
[CrossRef] [PubMed]

Price, D. F.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett.96, 055001 (2006).
[CrossRef] [PubMed]

Rapp, S.

Reitz, R.

N. Chigier and R. Reitz, Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena (AIAA, 1996), chap. Regimes of Jet Breakup and Breakup Mechanisms (Physical Aspects), 109–135.

Rethfeld, B.

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010).
[CrossRef]

D. S. Ivanov, B. Rethfeld, G. M. O’Connor, T. J. Glynn, A. N. Volkov, and L. V. Zhigilei, “The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films,” Appl. Phys. A92, 791–796 (2008).
[CrossRef]

Riedel, S.

S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys. A101, 309–312 (2010).
[CrossRef]

Robinson, P. B.

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89, 8225–8237 (2001).
[CrossRef]

Ruffert, C.

J. Koch, E. Fadeeva, M. Engelbracht, C. Ruffert, H. H. Gaatzen, A. Ostendorf, and B. N. Chichkov, “Maskless nonlinear lithography with femtosecond laser pulses,” Appl. Phys. A82, 23–26 (2006).
[CrossRef]

Schmidt, M.

Schmotz, M.

S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys. A101, 309–312 (2010).
[CrossRef]

Seifert, N.

N. Seifert and G. Betz, “Computer simulations of laser- induced ejection of droplets,” Appl. Surf. Sci.133, 189–194 (1998).
[CrossRef]

N. Seifert, G. Betz, and W. Husinsky, “Droplet formation on metallic surfaces during low-fluence laser irradiation,” Appl. Surf. Sci.103, 63–70 (1996).
[CrossRef]

Shima, A.

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89, 8225–8237 (2001).
[CrossRef]

Siwick, B. J.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science302, 1382–1385 (2003).
[CrossRef] [PubMed]

Sokolowski-Tinten, K.

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser- solid interaction in the femtosecond time regime,” Appl. Surf. Sci.109/110, 1–10 (1997).
[CrossRef]

D. von der Linde and K. Sokolowski-Tinten, “Physical mechanisms of short pulse laser ablation,” Appl. Surf. Sci.154–155, 1–10 (2000).
[CrossRef]

Springer, P. T.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett.96, 055001 (2006).
[CrossRef] [PubMed]

Tam, H.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett.96, 055001 (2006).
[CrossRef] [PubMed]

Thanawala, S. S.

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys. A95, 635–638 (2009).
[CrossRef]

Tomita, Y.

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89, 8225–8237 (2001).
[CrossRef]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
[CrossRef]

Unger, C.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A106, 479–487 (2012).
[CrossRef]

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A103, 271–277 (2011).
[CrossRef]

M. Gruene, C. Unger, L. Koch, A. Deiwick, and B. Chichkov, “Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting,” Biomed. Eng. Online10:19 (2011).
[CrossRef] [PubMed]

Vogel, H.

H. Vogel, Gerthsen Physik (Springer, 1995).

Volkov, A. N.

D. S. Ivanov, B. Rethfeld, G. M. O’Connor, T. J. Glynn, A. N. Volkov, and L. V. Zhigilei, “The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films,” Appl. Phys. A92, 791–796 (2008).
[CrossRef]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
[CrossRef]

von der Linde, D.

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser- solid interaction in the femtosecond time regime,” Appl. Surf. Sci.109/110, 1–10 (1997).
[CrossRef]

D. von der Linde and K. Sokolowski-Tinten, “Physical mechanisms of short pulse laser ablation,” Appl. Surf. Sci.154–155, 1–10 (2000).
[CrossRef]

Widmann, K.

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett.96, 055001 (2006).
[CrossRef] [PubMed]

Willis, D. A.

D. A. Willis and V. Grosu, “The effect of melting-induced volumetric expansion on initiation of laser-induced forward transfer,” Appl. Surf. Sci.253, 4759–4763 (2007).
[CrossRef]

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86, 244103 (2005).
[CrossRef]

Zhigilei, L. V.

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010).
[CrossRef]

D. S. Ivanov, B. Rethfeld, G. M. O’Connor, T. J. Glynn, A. N. Volkov, and L. V. Zhigilei, “The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films,” Appl. Phys. A92, 791–796 (2008).
[CrossRef]

D. S. Ivanov and L. V. Zhigilei, “Effect of pressure relaxation on the mechanisms of short-pulse laser melting,” Phys. Rev. Lett.91, 105701 (2003).
[CrossRef] [PubMed]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B68, 064114 (2003).
[CrossRef]

Appl. Phys. A (13)

F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A79, 879–881 (2004).
[CrossRef]

J. Koch, F. Korte, T. Bauer, C. Fallnich, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A81, 325–328 (2005).
[CrossRef]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A94, 221–230 (2008).
[CrossRef]

Y. Nakata, T. Hiromoto, and N. Miyanaga, “Mesoscopic nanomaterials generated by interfering femtosecond laser processing,” Appl. Phys. A101, 471–474 (2010).
[CrossRef]

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys. A95, 635–638 (2009).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996).
[CrossRef]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A106, 479–487 (2012).
[CrossRef]

D. S. Ivanov, B. Rethfeld, G. M. O’Connor, T. J. Glynn, A. N. Volkov, and L. V. Zhigilei, “The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films,” Appl. Phys. A92, 791–796 (2008).
[CrossRef]

Y. P. Meshcheryakov and N. M. Bulgakova, “Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation,” Appl. Phys. A82, 363–368 (2006).
[CrossRef]

S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys. A101, 309–312 (2010).
[CrossRef]

I. Mingareev and A. Horn, “Time-resolved investigations of plasma and melt ejections in metals by pump-probe shadowgrpahy,” Appl. Phys. A92, 917–920 (2008).
[CrossRef]

C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A103, 271–277 (2011).
[CrossRef]

J. Koch, E. Fadeeva, M. Engelbracht, C. Ruffert, H. H. Gaatzen, A. Ostendorf, and B. N. Chichkov, “Maskless nonlinear lithography with femtosecond laser pulses,” Appl. Phys. A82, 23–26 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86, 244103 (2005).
[CrossRef]

Appl. Surf. Sci. (5)

D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser- solid interaction in the femtosecond time regime,” Appl. Surf. Sci.109/110, 1–10 (1997).
[CrossRef]

N. Seifert, G. Betz, and W. Husinsky, “Droplet formation on metallic surfaces during low-fluence laser irradiation,” Appl. Surf. Sci.103, 63–70 (1996).
[CrossRef]

Y. Nakata, N. Miyanaga, and T. Okada, “Effect of pulse width and fluence of femtosecond laser on the size of nanobump array,” Appl. Surf. Sci.253, 6555–6557 (2007).
[CrossRef]

N. Seifert and G. Betz, “Computer simulations of laser- induced ejection of droplets,” Appl. Surf. Sci.133, 189–194 (1998).
[CrossRef]

D. A. Willis and V. Grosu, “The effect of melting-induced volumetric expansion on initiation of laser-induced forward transfer,” Appl. Surf. Sci.253, 4759–4763 (2007).
[CrossRef]

Biomed. Eng. Online (1)

M. Gruene, C. Unger, L. Koch, A. Deiwick, and B. Chichkov, “Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting,” Biomed. Eng. Online10:19 (2011).
[CrossRef] [PubMed]

Eng. Anal. Bound. Elem. (1)

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28, 295–313 (2004).
[CrossRef]

J. Appl. Phys. (3)

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89, 8225–8237 (2001).
[CrossRef]

J. P. Moening, D. G. Georgiev, and J. G. Lawrence, “Focused ion beam and electron microscopy characterization of nanosharp tips and microbumps on silicon and metal thin films formed via localized single-pulse laser irradiation,” J. Appl. Phys.109, 014304 (2011).
[CrossRef]

D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Nakata, T. Okada, and M. Maeda, “Nano-sized hollow bump array generated by single femtosecond laser pulse,” Jpn. J. Appl. Phys.42, L1452–L1454 (2003).
[CrossRef]

Microfluid. Nanofluid. (1)

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved dynamics of laser-induced micro-jets from thin liquid films,” Microfluid. Nanofluid.11, 199–207 (2011).
[CrossRef]

Opt. Eng. (1)

J. Koch, F. Korte, C. Fallnich, and B. N. Chichkov, “Direct-write subwavelength structuring with femtosecond laser pulses,” Opt. Eng.5, 051103 (2005).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B68, 064114 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

D. S. Ivanov and L. V. Zhigilei, “Effect of pressure relaxation on the mechanisms of short-pulse laser melting,” Phys. Rev. Lett.91, 105701 (2003).
[CrossRef] [PubMed]

I. Egry, G. Lohoefer, and G. Jacobs, “Surface tension of liquid metals: Results from measurements on ground and in space,” Phys. Rev. Lett.75, 4043–4046 (1955).
[CrossRef]

T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett.96, 055001 (2006).
[CrossRef] [PubMed]

Science (1)

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science302, 1382–1385 (2003).
[CrossRef] [PubMed]

Sov. Phys.-JETP (1)

S. Anisimov, B. Kapeliovich, and T. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys.-JETP39, 375–377 (1974).

Other (6)

J. P. Moening, “Formation of nano-sharp tips and microbumps on silicon and metal films by localized single-pulse laser irradiation,” Ph.D. thesis, The University of Toledo (2010).

N. Chigier and R. Reitz, Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena (AIAA, 1996), chap. Regimes of Jet Breakup and Breakup Mechanisms (Physical Aspects), 109–135.

P. O’Rourke and A. Amdsen, “The tab method for numerical calculations of spray droplet breakup,” Society of Automotive Engineers, Paper 872089 (1987).

D. von der Linde and K. Sokolowski-Tinten, “Physical mechanisms of short pulse laser ablation,” Appl. Surf. Sci.154–155, 1–10 (2000).
[CrossRef]

B. S. Mitchell, An Introduction to Materials Engineering and Science for Chemical and Materials Engineers (John Wiley & Sons, 2004).

H. Vogel, Gerthsen Physik (Springer, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of the pump-probe setup. BD beam dump, DM dichroic mirror, GS gold-coated glass substrate, MO microscope objective, TM turning mirror

Fig. 2
Fig. 2

(a) Time-resolved melt dynamics of 60 nm thick gold film induced by a 160 nJ fs laser pulse. The focus diameter is 6 μm (FWHM). (b) Corresponding SEM picture.

Fig. 3
Fig. 3

Energy-resolved images of the final solidified state in a 60 nm gold film after single fs laser pulse irradiation. The focus diameter is 6 μm.

Fig. 4
Fig. 4

(a) Time-resolved melt dynamics of 60 nm thick gold film induced by a 255 nJ fs laser pulse. The focus diameter is 8 μm. (b) Corresponding SEM picture.

Fig. 5
Fig. 5

Energy-resolved images of the final solidified state in a 60 nm gold film after single fs laser irradiation. The focus diameter is 8 μm.

Fig. 6
Fig. 6

Scheme of the femtosecond laser-induced bump and jet formation. The red color symbolizes molten gold. Please note that the lateral expansion of the molten area is energy-dependent.

Fig. 7
Fig. 7

Accidentally opened gold bubble reveals a second gold spike.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ crit = 0.82 B 1 ρ a 3 σ
l crit = U τ crit

Metrics