Abstract

We demonstrate a chiral meta-molecule in the ultraviolet (UV) and visible (VIS) regions using a complex of Au nanoparticles (NPs) and rod-shaped tobacco mosaic virus (TMV). Au NPs five nm in diameter are uniformly formed on peptide-modified TMV. The peptide-modified TMV with uniform-sized Au NPs has improved dispersion in solution. A negative circular dichroism (CD) peak is produced around 540 nm, at plasmonic resonance wavelength of Au NPs. Additionally, modification of a CD peak in the UV region is observed. Attaching NPs to a virus causes the enhancement and modification of CD peaks in both the UV and VIS regions. Our results open a new avenue for the preparation of three dimensional chiral metamaterials at optical frequencies.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
    [CrossRef] [PubMed]
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
    [CrossRef] [PubMed]
  3. N. Berova, K. Nakanishi, and R. W. Woody, Circular dichroism : principles and applications,2nd ed. (Wiley-VCH, 2000).
  4. J. B. Pendry, “A chiral route to negative refraction,” Science306, 1353–1355 (2004).
    [CrossRef] [PubMed]
  5. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10, 509–514 (1968).
    [CrossRef]
  6. T. G. Schaaff and R. L. Whetten, “Giant gold-glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B104, 2630–2641 (2000).
    [CrossRef]
  7. S. D. Elliott, M. P. Moloney, and Y. K. Gun’ko, “Chiral shells and achiral cores in CdS quantum dots,” Nano Lett.8, 2452–2457 (2008).
    [CrossRef] [PubMed]
  8. T. Nakashima, Y. Kobayashi, and T. Kawai, “Optical activity and chiral memory of thiol-capped CdTe nanocrystals,” J. Am. Chem. Soc.131, 10342–10343 (2009).
    [CrossRef] [PubMed]
  9. J. -M. Ha, A. Solovyov, and A. Katz, “Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles,” Langmuir25, 10548–10553 (2009).
    [CrossRef] [PubMed]
  10. A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10, 1374–1382 (2010).
    [CrossRef] [PubMed]
  11. J. George and K. G. Thomas, “Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes,” J. Am. Chem. Soc.132, 2502–2503 (2010).
    [CrossRef] [PubMed]
  12. J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett.11, 701–705 (2011).
    [CrossRef] [PubMed]
  13. C. Sachse, J. Z. Chen, P. Coureux, M. E. Stroupe, M. Fndrich, and N. Grigorieff, “High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus,” J. Mol. Biol.371, 812–835 (2007).
    [CrossRef] [PubMed]
  14. W. L. DeLano, PyMol Molecular Graphics System, Palo Alto, CA. (2002).
  15. M. Kobayashi, I. Yamashita, Y. Uraoka, K. Shiba, and S. Tomita, “Gold nanostructures using tobacco mosaic viruses for optical metamaterials,” Proc. SPIE8070, 8070C (2011).
  16. K. Sano and K. Shiba, “A hexapeptide motif that electrostatically binds to the surface of titanium,” J. Am. Chem. Soc.125, 14234–14235 (2003).
    [CrossRef] [PubMed]
  17. K. Sano, S. Yoshii, I. Yamashita, and K. Shiba, “In aqua structuralization of a three-dimensional configuration using biomolecules,” Nano Lett.7, 3200–3202 (2007).
    [CrossRef] [PubMed]
  18. M. Kobayashi, M. Seki, H. Tabata, Y. Watanabe, and I. Yamashita, “Fabrication of aligned magnetic nanoparticles using tobamoviruses,” Nano Lett.10, 773–776 (2010).
    [CrossRef] [PubMed]
  19. K. M. Bromley, A. J. Patil, A. W. Perriman, G. Stubbs, and S. Mann, “Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles,” J. Mater. Chem.18, 4796–4801 (2008).
    [CrossRef]
  20. H. Hamamoto, Y. Sugiyama, N. Nakagawa, E. Hashida, Y. Matsunaga, S. Takemoto, Y. Watanabe, and Y. Okada, “A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato,” Nature Biotechnology11, 930–932 (1993).
    [CrossRef]
  21. S.M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta1751, 119–139 (2005).
    [CrossRef] [PubMed]
  22. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
    [CrossRef] [PubMed]
  23. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
    [CrossRef]
  24. Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C115, 13254–13261 (2011).
    [CrossRef]
  25. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hoögele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature483, 311–314 (2012).
    [CrossRef] [PubMed]
  26. A.-H. Bae, M. Numata, T. Hasegawa, C. Li, K. Kaneko, K. Sakurai, and S. Shinkai, “1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds,” Angew. Chem.117, 2066–2069 (2005).
    [CrossRef]
  27. C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11, 4400–4404 (2011).
    [CrossRef] [PubMed]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).

2012 (1)

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hoögele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

2011 (4)

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C115, 13254–13261 (2011).
[CrossRef]

J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett.11, 701–705 (2011).
[CrossRef] [PubMed]

M. Kobayashi, I. Yamashita, Y. Uraoka, K. Shiba, and S. Tomita, “Gold nanostructures using tobacco mosaic viruses for optical metamaterials,” Proc. SPIE8070, 8070C (2011).

2010 (3)

M. Kobayashi, M. Seki, H. Tabata, Y. Watanabe, and I. Yamashita, “Fabrication of aligned magnetic nanoparticles using tobamoviruses,” Nano Lett.10, 773–776 (2010).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10, 1374–1382 (2010).
[CrossRef] [PubMed]

J. George and K. G. Thomas, “Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes,” J. Am. Chem. Soc.132, 2502–2503 (2010).
[CrossRef] [PubMed]

2009 (2)

T. Nakashima, Y. Kobayashi, and T. Kawai, “Optical activity and chiral memory of thiol-capped CdTe nanocrystals,” J. Am. Chem. Soc.131, 10342–10343 (2009).
[CrossRef] [PubMed]

J. -M. Ha, A. Solovyov, and A. Katz, “Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles,” Langmuir25, 10548–10553 (2009).
[CrossRef] [PubMed]

2008 (2)

K. M. Bromley, A. J. Patil, A. W. Perriman, G. Stubbs, and S. Mann, “Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles,” J. Mater. Chem.18, 4796–4801 (2008).
[CrossRef]

S. D. Elliott, M. P. Moloney, and Y. K. Gun’ko, “Chiral shells and achiral cores in CdS quantum dots,” Nano Lett.8, 2452–2457 (2008).
[CrossRef] [PubMed]

2007 (3)

K. Sano, S. Yoshii, I. Yamashita, and K. Shiba, “In aqua structuralization of a three-dimensional configuration using biomolecules,” Nano Lett.7, 3200–3202 (2007).
[CrossRef] [PubMed]

C. Sachse, J. Z. Chen, P. Coureux, M. E. Stroupe, M. Fndrich, and N. Grigorieff, “High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus,” J. Mol. Biol.371, 812–835 (2007).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

2005 (3)

S.M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta1751, 119–139 (2005).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

A.-H. Bae, M. Numata, T. Hasegawa, C. Li, K. Kaneko, K. Sakurai, and S. Shinkai, “1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds,” Angew. Chem.117, 2066–2069 (2005).
[CrossRef]

2004 (2)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “A chiral route to negative refraction,” Science306, 1353–1355 (2004).
[CrossRef] [PubMed]

2003 (1)

K. Sano and K. Shiba, “A hexapeptide motif that electrostatically binds to the surface of titanium,” J. Am. Chem. Soc.125, 14234–14235 (2003).
[CrossRef] [PubMed]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

T. G. Schaaff and R. L. Whetten, “Giant gold-glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B104, 2630–2641 (2000).
[CrossRef]

1993 (1)

H. Hamamoto, Y. Sugiyama, N. Nakagawa, E. Hashida, Y. Matsunaga, S. Takemoto, Y. Watanabe, and Y. Okada, “A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato,” Nature Biotechnology11, 930–932 (1993).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10, 509–514 (1968).
[CrossRef]

Bae, A.-H.

A.-H. Bae, M. Numata, T. Hasegawa, C. Li, K. Kaneko, K. Sakurai, and S. Shinkai, “1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds,” Angew. Chem.117, 2066–2069 (2005).
[CrossRef]

Berova, N.

N. Berova, K. Nakanishi, and R. W. Woody, Circular dichroism : principles and applications,2nd ed. (Wiley-VCH, 2000).

Bromley, K. M.

K. M. Bromley, A. J. Patil, A. W. Perriman, G. Stubbs, and S. Mann, “Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles,” J. Mater. Chem.18, 4796–4801 (2008).
[CrossRef]

Chen, J. Z.

C. Sachse, J. Z. Chen, P. Coureux, M. E. Stroupe, M. Fndrich, and N. Grigorieff, “High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus,” J. Mol. Biol.371, 812–835 (2007).
[CrossRef] [PubMed]

Chen, Y.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Coureux, P.

C. Sachse, J. Z. Chen, P. Coureux, M. E. Stroupe, M. Fndrich, and N. Grigorieff, “High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus,” J. Mol. Biol.371, 812–835 (2007).
[CrossRef] [PubMed]

DeLano, W. L.

W. L. DeLano, PyMol Molecular Graphics System, Palo Alto, CA. (2002).

Elliott, S. D.

S. D. Elliott, M. P. Moloney, and Y. K. Gun’ko, “Chiral shells and achiral cores in CdS quantum dots,” Nano Lett.8, 2452–2457 (2008).
[CrossRef] [PubMed]

Falkner, M.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Fan, Z.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hoögele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C115, 13254–13261 (2011).
[CrossRef]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10, 1374–1382 (2010).
[CrossRef] [PubMed]

Fedotov, V. A.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Fndrich, M.

C. Sachse, J. Z. Chen, P. Coureux, M. E. Stroupe, M. Fndrich, and N. Grigorieff, “High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus,” J. Mol. Biol.371, 812–835 (2007).
[CrossRef] [PubMed]

George, J.

J. George and K. G. Thomas, “Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes,” J. Am. Chem. Soc.132, 2502–2503 (2010).
[CrossRef] [PubMed]

Govorov, A. O.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hoögele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C115, 13254–13261 (2011).
[CrossRef]

J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett.11, 701–705 (2011).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10, 1374–1382 (2010).
[CrossRef] [PubMed]

Grigorieff, N.

C. Sachse, J. Z. Chen, P. Coureux, M. E. Stroupe, M. Fndrich, and N. Grigorieff, “High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus,” J. Mol. Biol.371, 812–835 (2007).
[CrossRef] [PubMed]

Gun’ko, Y. K.

S. D. Elliott, M. P. Moloney, and Y. K. Gun’ko, “Chiral shells and achiral cores in CdS quantum dots,” Nano Lett.8, 2452–2457 (2008).
[CrossRef] [PubMed]

Ha, J. -M.

J. -M. Ha, A. Solovyov, and A. Katz, “Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles,” Langmuir25, 10548–10553 (2009).
[CrossRef] [PubMed]

Hamamoto, H.

H. Hamamoto, Y. Sugiyama, N. Nakagawa, E. Hashida, Y. Matsunaga, S. Takemoto, Y. Watanabe, and Y. Okada, “A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato,” Nature Biotechnology11, 930–932 (1993).
[CrossRef]

Hasegawa, T.

A.-H. Bae, M. Numata, T. Hasegawa, C. Li, K. Kaneko, K. Sakurai, and S. Shinkai, “1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds,” Angew. Chem.117, 2066–2069 (2005).
[CrossRef]

Hashida, E.

H. Hamamoto, Y. Sugiyama, N. Nakagawa, E. Hashida, Y. Matsunaga, S. Takemoto, Y. Watanabe, and Y. Okada, “A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato,” Nature Biotechnology11, 930–932 (1993).
[CrossRef]

Helgert, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Hernandez, P.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10, 1374–1382 (2010).
[CrossRef] [PubMed]

Hoögele, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hoögele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Jess, T. J.

S.M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta1751, 119–139 (2005).
[CrossRef] [PubMed]

Kaneko, K.

A.-H. Bae, M. Numata, T. Hasegawa, C. Li, K. Kaneko, K. Sakurai, and S. Shinkai, “1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds,” Angew. Chem.117, 2066–2069 (2005).
[CrossRef]

Katz, A.

J. -M. Ha, A. Solovyov, and A. Katz, “Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles,” Langmuir25, 10548–10553 (2009).
[CrossRef] [PubMed]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Kawai, T.

T. Nakashima, Y. Kobayashi, and T. Kawai, “Optical activity and chiral memory of thiol-capped CdTe nanocrystals,” J. Am. Chem. Soc.131, 10342–10343 (2009).
[CrossRef] [PubMed]

Kelly, S.M.

S.M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta1751, 119–139 (2005).
[CrossRef] [PubMed]

Kley, E.-B.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Kobayashi, M.

M. Kobayashi, I. Yamashita, Y. Uraoka, K. Shiba, and S. Tomita, “Gold nanostructures using tobacco mosaic viruses for optical metamaterials,” Proc. SPIE8070, 8070C (2011).

M. Kobayashi, M. Seki, H. Tabata, Y. Watanabe, and I. Yamashita, “Fabrication of aligned magnetic nanoparticles using tobamoviruses,” Nano Lett.10, 773–776 (2010).
[CrossRef] [PubMed]

Kobayashi, Y.

T. Nakashima, Y. Kobayashi, and T. Kawai, “Optical activity and chiral memory of thiol-capped CdTe nanocrystals,” J. Am. Chem. Soc.131, 10342–10343 (2009).
[CrossRef] [PubMed]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Kuzyk, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hoögele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Lederer, F.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Li, C.

A.-H. Bae, M. Numata, T. Hasegawa, C. Li, K. Kaneko, K. Sakurai, and S. Shinkai, “1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds,” Angew. Chem.117, 2066–2069 (2005).
[CrossRef]

Liedl, T.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hoögele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Mann, S.

K. M. Bromley, A. J. Patil, A. W. Perriman, G. Stubbs, and S. Mann, “Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles,” J. Mater. Chem.18, 4796–4801 (2008).
[CrossRef]

Matsunaga, Y.

H. Hamamoto, Y. Sugiyama, N. Nakagawa, E. Hashida, Y. Matsunaga, S. Takemoto, Y. Watanabe, and Y. Okada, “A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato,” Nature Biotechnology11, 930–932 (1993).
[CrossRef]

Menzel, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Moloney, M. P.

S. D. Elliott, M. P. Moloney, and Y. K. Gun’ko, “Chiral shells and achiral cores in CdS quantum dots,” Nano Lett.8, 2452–2457 (2008).
[CrossRef] [PubMed]

Naik, R. R.

J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett.11, 701–705 (2011).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10, 1374–1382 (2010).
[CrossRef] [PubMed]

Nakagawa, N.

H. Hamamoto, Y. Sugiyama, N. Nakagawa, E. Hashida, Y. Matsunaga, S. Takemoto, Y. Watanabe, and Y. Okada, “A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato,” Nature Biotechnology11, 930–932 (1993).
[CrossRef]

Nakanishi, K.

N. Berova, K. Nakanishi, and R. W. Woody, Circular dichroism : principles and applications,2nd ed. (Wiley-VCH, 2000).

Nakashima, T.

T. Nakashima, Y. Kobayashi, and T. Kawai, “Optical activity and chiral memory of thiol-capped CdTe nanocrystals,” J. Am. Chem. Soc.131, 10342–10343 (2009).
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Numata, M.

A.-H. Bae, M. Numata, T. Hasegawa, C. Li, K. Kaneko, K. Sakurai, and S. Shinkai, “1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds,” Angew. Chem.117, 2066–2069 (2005).
[CrossRef]

Okada, Y.

H. Hamamoto, Y. Sugiyama, N. Nakagawa, E. Hashida, Y. Matsunaga, S. Takemoto, Y. Watanabe, and Y. Okada, “A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato,” Nature Biotechnology11, 930–932 (1993).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hoögele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Patil, A. J.

K. M. Bromley, A. J. Patil, A. W. Perriman, G. Stubbs, and S. Mann, “Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles,” J. Mater. Chem.18, 4796–4801 (2008).
[CrossRef]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “A chiral route to negative refraction,” Science306, 1353–1355 (2004).
[CrossRef] [PubMed]

Perriman, A. W.

K. M. Bromley, A. J. Patil, A. W. Perriman, G. Stubbs, and S. Mann, “Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles,” J. Mater. Chem.18, 4796–4801 (2008).
[CrossRef]

Pertsch, T.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Plum, E.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Price, N. C.

S.M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta1751, 119–139 (2005).
[CrossRef] [PubMed]

Pshenay-Severin, E.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Roller, E.-M.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hoögele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Sachse, C.

C. Sachse, J. Z. Chen, P. Coureux, M. E. Stroupe, M. Fndrich, and N. Grigorieff, “High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus,” J. Mol. Biol.371, 812–835 (2007).
[CrossRef] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Sakurai, K.

A.-H. Bae, M. Numata, T. Hasegawa, C. Li, K. Kaneko, K. Sakurai, and S. Shinkai, “1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds,” Angew. Chem.117, 2066–2069 (2005).
[CrossRef]

Sano, K.

K. Sano, S. Yoshii, I. Yamashita, and K. Shiba, “In aqua structuralization of a three-dimensional configuration using biomolecules,” Nano Lett.7, 3200–3202 (2007).
[CrossRef] [PubMed]

K. Sano and K. Shiba, “A hexapeptide motif that electrostatically binds to the surface of titanium,” J. Am. Chem. Soc.125, 14234–14235 (2003).
[CrossRef] [PubMed]

Schaaff, T. G.

T. G. Schaaff and R. L. Whetten, “Giant gold-glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B104, 2630–2641 (2000).
[CrossRef]

Schreiber, R.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hoögele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Schwanecke, A. S.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Seki, M.

M. Kobayashi, M. Seki, H. Tabata, Y. Watanabe, and I. Yamashita, “Fabrication of aligned magnetic nanoparticles using tobamoviruses,” Nano Lett.10, 773–776 (2010).
[CrossRef] [PubMed]

Shiba, K.

M. Kobayashi, I. Yamashita, Y. Uraoka, K. Shiba, and S. Tomita, “Gold nanostructures using tobacco mosaic viruses for optical metamaterials,” Proc. SPIE8070, 8070C (2011).

K. Sano, S. Yoshii, I. Yamashita, and K. Shiba, “In aqua structuralization of a three-dimensional configuration using biomolecules,” Nano Lett.7, 3200–3202 (2007).
[CrossRef] [PubMed]

K. Sano and K. Shiba, “A hexapeptide motif that electrostatically binds to the surface of titanium,” J. Am. Chem. Soc.125, 14234–14235 (2003).
[CrossRef] [PubMed]

Shinkai, S.

A.-H. Bae, M. Numata, T. Hasegawa, C. Li, K. Kaneko, K. Sakurai, and S. Shinkai, “1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds,” Angew. Chem.117, 2066–2069 (2005).
[CrossRef]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hoögele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Slocik, J. M.

J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett.11, 701–705 (2011).
[CrossRef] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10, 1374–1382 (2010).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Solovyov, A.

J. -M. Ha, A. Solovyov, and A. Katz, “Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles,” Langmuir25, 10548–10553 (2009).
[CrossRef] [PubMed]

Stroupe, M. E.

C. Sachse, J. Z. Chen, P. Coureux, M. E. Stroupe, M. Fndrich, and N. Grigorieff, “High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus,” J. Mol. Biol.371, 812–835 (2007).
[CrossRef] [PubMed]

Stubbs, G.

K. M. Bromley, A. J. Patil, A. W. Perriman, G. Stubbs, and S. Mann, “Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles,” J. Mater. Chem.18, 4796–4801 (2008).
[CrossRef]

Sugiyama, Y.

H. Hamamoto, Y. Sugiyama, N. Nakagawa, E. Hashida, Y. Matsunaga, S. Takemoto, Y. Watanabe, and Y. Okada, “A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato,” Nature Biotechnology11, 930–932 (1993).
[CrossRef]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Tabata, H.

M. Kobayashi, M. Seki, H. Tabata, Y. Watanabe, and I. Yamashita, “Fabrication of aligned magnetic nanoparticles using tobamoviruses,” Nano Lett.10, 773–776 (2010).
[CrossRef] [PubMed]

Takemoto, S.

H. Hamamoto, Y. Sugiyama, N. Nakagawa, E. Hashida, Y. Matsunaga, S. Takemoto, Y. Watanabe, and Y. Okada, “A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato,” Nature Biotechnology11, 930–932 (1993).
[CrossRef]

Thomas, K. G.

J. George and K. G. Thomas, “Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes,” J. Am. Chem. Soc.132, 2502–2503 (2010).
[CrossRef] [PubMed]

Tomita, S.

M. Kobayashi, I. Yamashita, Y. Uraoka, K. Shiba, and S. Tomita, “Gold nanostructures using tobacco mosaic viruses for optical metamaterials,” Proc. SPIE8070, 8070C (2011).

Tünnermann, A.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Uraoka, Y.

M. Kobayashi, I. Yamashita, Y. Uraoka, K. Shiba, and S. Tomita, “Gold nanostructures using tobacco mosaic viruses for optical metamaterials,” Proc. SPIE8070, 8070C (2011).

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10, 509–514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Watanabe, Y.

M. Kobayashi, M. Seki, H. Tabata, Y. Watanabe, and I. Yamashita, “Fabrication of aligned magnetic nanoparticles using tobamoviruses,” Nano Lett.10, 773–776 (2010).
[CrossRef] [PubMed]

H. Hamamoto, Y. Sugiyama, N. Nakagawa, E. Hashida, Y. Matsunaga, S. Takemoto, Y. Watanabe, and Y. Okada, “A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato,” Nature Biotechnology11, 930–932 (1993).
[CrossRef]

Whetten, R. L.

T. G. Schaaff and R. L. Whetten, “Giant gold-glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B104, 2630–2641 (2000).
[CrossRef]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

Woody, R. W.

N. Berova, K. Nakanishi, and R. W. Woody, Circular dichroism : principles and applications,2nd ed. (Wiley-VCH, 2000).

Yamashita, I.

M. Kobayashi, I. Yamashita, Y. Uraoka, K. Shiba, and S. Tomita, “Gold nanostructures using tobacco mosaic viruses for optical metamaterials,” Proc. SPIE8070, 8070C (2011).

M. Kobayashi, M. Seki, H. Tabata, Y. Watanabe, and I. Yamashita, “Fabrication of aligned magnetic nanoparticles using tobamoviruses,” Nano Lett.10, 773–776 (2010).
[CrossRef] [PubMed]

K. Sano, S. Yoshii, I. Yamashita, and K. Shiba, “In aqua structuralization of a three-dimensional configuration using biomolecules,” Nano Lett.7, 3200–3202 (2007).
[CrossRef] [PubMed]

Yoshii, S.

K. Sano, S. Yoshii, I. Yamashita, and K. Shiba, “In aqua structuralization of a three-dimensional configuration using biomolecules,” Nano Lett.7, 3200–3202 (2007).
[CrossRef] [PubMed]

Zheludev, N. I.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Angew. Chem. (1)

A.-H. Bae, M. Numata, T. Hasegawa, C. Li, K. Kaneko, K. Sakurai, and S. Shinkai, “1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds,” Angew. Chem.117, 2066–2069 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007).
[CrossRef]

Biochim. Biophys. Acta (1)

S.M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta1751, 119–139 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (3)

T. Nakashima, Y. Kobayashi, and T. Kawai, “Optical activity and chiral memory of thiol-capped CdTe nanocrystals,” J. Am. Chem. Soc.131, 10342–10343 (2009).
[CrossRef] [PubMed]

J. George and K. G. Thomas, “Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes,” J. Am. Chem. Soc.132, 2502–2503 (2010).
[CrossRef] [PubMed]

K. Sano and K. Shiba, “A hexapeptide motif that electrostatically binds to the surface of titanium,” J. Am. Chem. Soc.125, 14234–14235 (2003).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

K. M. Bromley, A. J. Patil, A. W. Perriman, G. Stubbs, and S. Mann, “Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles,” J. Mater. Chem.18, 4796–4801 (2008).
[CrossRef]

J. Mol. Biol. (1)

C. Sachse, J. Z. Chen, P. Coureux, M. E. Stroupe, M. Fndrich, and N. Grigorieff, “High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus,” J. Mol. Biol.371, 812–835 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

T. G. Schaaff and R. L. Whetten, “Giant gold-glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B104, 2630–2641 (2000).
[CrossRef]

J. Phys. Chem. C (1)

Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C115, 13254–13261 (2011).
[CrossRef]

Langmuir (1)

J. -M. Ha, A. Solovyov, and A. Katz, “Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles,” Langmuir25, 10548–10553 (2009).
[CrossRef] [PubMed]

Nano Lett. (6)

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10, 1374–1382 (2010).
[CrossRef] [PubMed]

S. D. Elliott, M. P. Moloney, and Y. K. Gun’ko, “Chiral shells and achiral cores in CdS quantum dots,” Nano Lett.8, 2452–2457 (2008).
[CrossRef] [PubMed]

J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett.11, 701–705 (2011).
[CrossRef] [PubMed]

K. Sano, S. Yoshii, I. Yamashita, and K. Shiba, “In aqua structuralization of a three-dimensional configuration using biomolecules,” Nano Lett.7, 3200–3202 (2007).
[CrossRef] [PubMed]

M. Kobayashi, M. Seki, H. Tabata, Y. Watanabe, and I. Yamashita, “Fabrication of aligned magnetic nanoparticles using tobamoviruses,” Nano Lett.10, 773–776 (2010).
[CrossRef] [PubMed]

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11, 4400–4404 (2011).
[CrossRef] [PubMed]

Nature (1)

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hoögele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature483, 311–314 (2012).
[CrossRef] [PubMed]

Nature Biotechnology (1)

H. Hamamoto, Y. Sugiyama, N. Nakagawa, E. Hashida, Y. Matsunaga, S. Takemoto, Y. Watanabe, and Y. Okada, “A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato,” Nature Biotechnology11, 930–932 (1993).
[CrossRef]

Phys. Rev. Lett. (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Kobayashi, I. Yamashita, Y. Uraoka, K. Shiba, and S. Tomita, “Gold nanostructures using tobacco mosaic viruses for optical metamaterials,” Proc. SPIE8070, 8070C (2011).

Science (2)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “A chiral route to negative refraction,” Science306, 1353–1355 (2004).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10, 509–514 (1968).
[CrossRef]

Other (3)

N. Berova, K. Nakanishi, and R. W. Woody, Circular dichroism : principles and applications,2nd ed. (Wiley-VCH, 2000).

W. L. DeLano, PyMol Molecular Graphics System, Palo Alto, CA. (2002).

E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic representation of TMV. The virus has a right-handed helical structure with 16 and 1/3 coat proteins constituting one helical turn. A coat protein subunit is highlighted in red. In detail, each TMV is composed of a genomic single-stranded RNA and 2130 identical coat proteins. The RNA molecules make a helical tube about 5 nm diameter, and coat proteins are aligned along the RNA. (b) Atomic coordination of a coat protein subunit of the virus (PDB:2OM3) [13] illustrated using PyMol [14]. A wild-type protein subunit consists of 158 amino acid residues. Amino acid sequence of a titanium-binding peptide (TBP), which was fused to the C-terminus of a coat protein, is shown.

Fig. 2
Fig. 2

TEM images and schematic representations of Au NPs aligned along with (a) wtTMV and (c) tbpTMV. The samples were stained with 3% phosphotungstic acid, which allows clearer visualization of proteins. Viruses are observed as white rods and Au NPs as black patches. The size distribution of Au NPs of wtTMV-Au (b) and tbpTMV-Au (d) are also shown.

Fig. 3
Fig. 3

UV-VIS spectra of tbpTMV-Au (red) and wtTMV-Au (blue). Black line corresponds to a spectrum obtained using reaction mixture without virus. Inset shows time dependence of absorbance at 540 nm.

Fig. 4
Fig. 4

(a) CD spectra of the tbpTMV-Au (red open squares) and wtTMV-Au (blue filled circles). Black crosses correspond to tbpTMV only. Inset shows enlarged spectra between 200 and 300 nm. (b) Simultaneously measured UV-VIS spectra of the complexes.

Metrics