Abstract

Ultrasound pulse guided digital phase conjugation has emerged to realize fluorescence imaging inside random scattering media. Its major limitation is the slow imaging speed, as a new wavefront needs to be measured for each voxel. Therefore 3D or even 2D imaging can be time consuming. For practical applications on biological systems, we need to accelerate the imaging process by orders of magnitude. Here we propose and experimentally demonstrate a parallel wavefront measurement scheme towards such a goal. Multiple focused ultrasound pulses of different carrier frequencies can be simultaneously launched inside a scattering medium. Heterodyne interferometry is used to measure all of the wavefronts originating from every sound focus in parallel. We use these wavefronts in sequence to rapidly excite fluorescence at all the voxels defined by the focused ultrasound pulses. In this report, we employed a commercially available sound transducer to generate two sound foci in parallel, doubled the wavefront measurement speed, and reduced the mechanical scanning steps of the sound transducer to half.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998).
    [CrossRef] [PubMed]
  2. B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci.32(1), 435–506 (2009).
    [CrossRef] [PubMed]
  3. J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
    [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  5. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett.28(12), 1022–1024 (2003).
    [CrossRef] [PubMed]
  6. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A23(12), 3139–3149 (2006).
    [CrossRef] [PubMed]
  7. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  8. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  9. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  10. A. Derode, P. Roux, and M. Fink, “Robust acoustic time-reversal with high-order multiple-scattering,” Phys. Rev. Lett.75(23), 4206–4209 (1995).
    [CrossRef] [PubMed]
  11. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science315(5815), 1120–1122 (2007).
    [CrossRef] [PubMed]
  12. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
    [CrossRef] [PubMed]
  13. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
    [CrossRef] [PubMed]
  14. arXiv:0807.1087.
  15. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
    [CrossRef] [PubMed]
  16. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics6(9), 583–587 (2012).
    [CrossRef]
  17. M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett.95(12), 123702 (2009).
    [CrossRef] [PubMed]
  18. M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (tsopc) on rabbit ear,” Opt. Express18(1), 25–30 (2010).
    [CrossRef] [PubMed]
  19. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express18(4), 3444–3455 (2010).
    [CrossRef] [PubMed]
  20. M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media,” Opt. Lett.36(6), 870–872 (2011).
    [CrossRef] [PubMed]
  21. M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express19(4), 2989–2995 (2011).
    [CrossRef] [PubMed]
  22. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
    [CrossRef]
  23. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat Commun2, 447 (2011).
    [CrossRef] [PubMed]
  24. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
    [CrossRef] [PubMed]
  25. L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: An analytic model,” Phys. Rev. Lett.87(4), 043903 (2001).
    [CrossRef] [PubMed]
  26. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011).
    [CrossRef] [PubMed]
  27. P. X. Lai, X. Xu, H. L. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt.16(8), 080505 (2011).
    [CrossRef] [PubMed]
  28. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012).
    [CrossRef]
  29. Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun3, 928 (2012).
    [CrossRef] [PubMed]
  30. M. Wildenhain, J. Knobbe, A. Gehner, M. Wagner, and H. Lakner, “Ao slm demonstration system and test bed,” Proc. SPIE6467, 64670E, 64670E-10 (2007).
    [CrossRef]

2012

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
[CrossRef] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics6(9), 583–587 (2012).
[CrossRef]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012).
[CrossRef]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun3, 928 (2012).
[CrossRef] [PubMed]

2011

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011).
[CrossRef] [PubMed]

P. X. Lai, X. Xu, H. L. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt.16(8), 080505 (2011).
[CrossRef] [PubMed]

M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media,” Opt. Lett.36(6), 870–872 (2011).
[CrossRef] [PubMed]

M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express19(4), 2989–2995 (2011).
[CrossRef] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat Commun2, 447 (2011).
[CrossRef] [PubMed]

2010

2009

M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett.95(12), 123702 (2009).
[CrossRef] [PubMed]

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci.32(1), 435–506 (2009).
[CrossRef] [PubMed]

2008

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

2007

M. Wildenhain, J. Knobbe, A. Gehner, M. Wagner, and H. Lakner, “Ao slm demonstration system and test bed,” Proc. SPIE6467, 64670E, 64670E-10 (2007).
[CrossRef]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

2006

2003

2001

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: An analytic model,” Phys. Rev. Lett.87(4), 043903 (2001).
[CrossRef] [PubMed]

1998

R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998).
[CrossRef] [PubMed]

1995

A. Derode, P. Roux, and M. Fink, “Robust acoustic time-reversal with high-order multiple-scattering,” Phys. Rev. Lett.75(23), 4206–4209 (1995).
[CrossRef] [PubMed]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1990

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Austin, D. R.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat Commun2, 447 (2011).
[CrossRef] [PubMed]

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
[CrossRef] [PubMed]

Bondareff, P.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat Commun2, 447 (2011).
[CrossRef] [PubMed]

Bouma, B. E.

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Burns, L. D.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci.32(1), 435–506 (2009).
[CrossRef] [PubMed]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chatel, B.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat Commun2, 447 (2011).
[CrossRef] [PubMed]

Choi, W.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics6(9), 583–587 (2012).
[CrossRef]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics6(9), 583–587 (2012).
[CrossRef]

Choi, Y.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics6(9), 583–587 (2012).
[CrossRef]

Cui, M.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
[CrossRef] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012).
[CrossRef]

M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media,” Opt. Lett.36(6), 870–872 (2011).
[CrossRef] [PubMed]

M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express19(4), 2989–2995 (2011).
[CrossRef] [PubMed]

M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (tsopc) on rabbit ear,” Opt. Express18(1), 25–30 (2010).
[CrossRef] [PubMed]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express18(4), 3444–3455 (2010).
[CrossRef] [PubMed]

M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett.95(12), 123702 (2009).
[CrossRef] [PubMed]

de Boer, J. F.

de Rosny, J.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

Denk, W.

Derode, A.

A. Derode, P. Roux, and M. Fink, “Robust acoustic time-reversal with high-order multiple-scattering,” Phys. Rev. Lett.75(23), 4206–4209 (1995).
[CrossRef] [PubMed]

Dimarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun3, 928 (2012).
[CrossRef] [PubMed]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Fercher, A.

Fink, M.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
[CrossRef] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

A. Derode, P. Roux, and M. Fink, “Robust acoustic time-reversal with high-order multiple-scattering,” Phys. Rev. Lett.75(23), 4206–4209 (1995).
[CrossRef] [PubMed]

Fiolka, R.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gehner, A.

M. Wildenhain, J. Knobbe, A. Gehner, M. Wagner, and H. Lakner, “Ao slm demonstration system and test bed,” Proc. SPIE6467, 64670E, 64670E-10 (2007).
[CrossRef]

Germain, R. N.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
[CrossRef] [PubMed]

Ghosh, K. K.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci.32(1), 435–506 (2009).
[CrossRef] [PubMed]

Gigan, S.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat Commun2, 447 (2011).
[CrossRef] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hasan, M. T.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Judkewitz, B.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun3, 928 (2012).
[CrossRef] [PubMed]

Katz, O.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Kim, J.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics6(9), 583–587 (2012).
[CrossRef]

Kim, M.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics6(9), 583–587 (2012).
[CrossRef]

Knobbe, J.

M. Wildenhain, J. Knobbe, A. Gehner, M. Wagner, and H. Lakner, “Ao slm demonstration system and test bed,” Proc. SPIE6467, 64670E, 64670E-10 (2007).
[CrossRef]

Lai, P. X.

P. X. Lai, X. Xu, H. L. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt.16(8), 080505 (2011).
[CrossRef] [PubMed]

Lakner, H.

M. Wildenhain, J. Knobbe, A. Gehner, M. Wagner, and H. Lakner, “Ao slm demonstration system and test bed,” Proc. SPIE6467, 64670E, 64670E-10 (2007).
[CrossRef]

Leitgeb, R.

Lerosey, G.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
[CrossRef] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, H.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011).
[CrossRef] [PubMed]

Liu, H. L.

P. X. Lai, X. Xu, H. L. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt.16(8), 080505 (2011).
[CrossRef] [PubMed]

McCabe, D. J.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat Commun2, 447 (2011).
[CrossRef] [PubMed]

McDowell, E. J.

M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (tsopc) on rabbit ear,” Opt. Express18(1), 25–30 (2010).
[CrossRef] [PubMed]

M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett.95(12), 123702 (2009).
[CrossRef] [PubMed]

Mosk, A. P.

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

Mukamel, E. A.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci.32(1), 435–506 (2009).
[CrossRef] [PubMed]

Park, B. H.

Park, Q. H.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics6(9), 583–587 (2012).
[CrossRef]

Pierce, M. C.

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
[CrossRef] [PubMed]

Psaltis, D.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Roux, P.

A. Derode, P. Roux, and M. Fink, “Robust acoustic time-reversal with high-order multiple-scattering,” Phys. Rev. Lett.75(23), 4206–4209 (1995).
[CrossRef] [PubMed]

Schnitzer, M. J.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci.32(1), 435–506 (2009).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Si, K.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012).
[CrossRef]

Silberberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Small, E.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Suzuki, Y.

P. X. Lai, X. Xu, H. L. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt.16(8), 080505 (2011).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tajalli, A.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat Commun2, 447 (2011).
[CrossRef] [PubMed]

Tang, J.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
[CrossRef] [PubMed]

Tearney, G. J.

Theer, P.

Tourin, A.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

Tsien, R. Y.

R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998).
[CrossRef] [PubMed]

Vellekoop, I. M.

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

Wagner, M.

M. Wildenhain, J. Knobbe, A. Gehner, M. Wagner, and H. Lakner, “Ao slm demonstration system and test bed,” Proc. SPIE6467, 64670E, 64670E-10 (2007).
[CrossRef]

Walmsley, I. A.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat Commun2, 447 (2011).
[CrossRef] [PubMed]

Wang, L. V.

P. X. Lai, X. Xu, H. L. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt.16(8), 080505 (2011).
[CrossRef] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011).
[CrossRef] [PubMed]

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: An analytic model,” Phys. Rev. Lett.87(4), 043903 (2001).
[CrossRef] [PubMed]

Wang, Y. M.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun3, 928 (2012).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wei Ho, E. T.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci.32(1), 435–506 (2009).
[CrossRef] [PubMed]

Wildenhain, M.

M. Wildenhain, J. Knobbe, A. Gehner, M. Wagner, and H. Lakner, “Ao slm demonstration system and test bed,” Proc. SPIE6467, 64670E, 64670E-10 (2007).
[CrossRef]

Wilt, B. A.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci.32(1), 435–506 (2009).
[CrossRef] [PubMed]

Xu, X.

P. X. Lai, X. Xu, H. L. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt.16(8), 080505 (2011).
[CrossRef] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011).
[CrossRef] [PubMed]

Yang, C.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun3, 928 (2012).
[CrossRef] [PubMed]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express18(4), 3444–3455 (2010).
[CrossRef] [PubMed]

M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (tsopc) on rabbit ear,” Opt. Express18(1), 25–30 (2010).
[CrossRef] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Yang, C. H.

M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett.95(12), 123702 (2009).
[CrossRef] [PubMed]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Yoon, C.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics6(9), 583–587 (2012).
[CrossRef]

Annu. Rev. Biochem.

R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998).
[CrossRef] [PubMed]

Annu. Rev. Neurosci.

B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci.32(1), 435–506 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett.95(12), 123702 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt.

P. X. Lai, X. Xu, H. L. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt.16(8), 080505 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Nat Commun

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat Commun2, 447 (2011).
[CrossRef] [PubMed]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
[CrossRef] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun3, 928 (2012).
[CrossRef] [PubMed]

Nat. Photonics

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011).
[CrossRef] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics6(9), 583–587 (2012).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

A. Derode, P. Roux, and M. Fink, “Robust acoustic time-reversal with high-order multiple-scattering,” Phys. Rev. Lett.75(23), 4206–4209 (1995).
[CrossRef] [PubMed]

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: An analytic model,” Phys. Rev. Lett.87(4), 043903 (2001).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
[CrossRef] [PubMed]

Proc. SPIE

M. Wildenhain, J. Knobbe, A. Gehner, M. Wagner, and H. Lakner, “Ao slm demonstration system and test bed,” Proc. SPIE6467, 64670E, 64670E-10 (2007).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

Other

arXiv:0807.1087.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simultaneous recording of two wavefronts: (a) Two focused ultrasound pulses with different carrier frequencies (purple and orange spheres) are focused inside the sample. Diffused light reaches the two foci and the sound modulated wavefronts are recorded in parallel. (b, c) In the readout step, each wavefront is sequentially phase conjugated to form an optical focus at the position of the corresponding ultrasound focus.

Fig. 2
Fig. 2

Experimental Setup: Laser, repetition rate = 10 kHz, pulse duration = 20 ns Ti: sapphire laser; PO, Pockels cell; I, isolator; BS, beam splitter; AOM, acousto-optic modulator; BB, beam block; M, mirror; BE, beam expander; SLM, spatial light modulator; CMOS, CMOS camera; P, polarizer; BP, bandpass filter; L1, f = 35 mm lens; L2, f = 50 mm lens; ST, sound transducer; Stage, 3-axis motorized translation stage; D, fluorescence detector.

Fig. 3
Fig. 3

Generation of two focused ultrasound pulses with one transducer: (a) Location of the two ultrasound pulses upon the arrival of the laser pulse. The dashed line illustrates the beam waist of the transducer’s focus. (b) Driving signal for the transducer.

Fig. 4
Fig. 4

Timing and synchronization. DG1, delay generator (Stanford Research DG645); DG2, delay generator (Stanford Research DG535); AWG, arbitrary waveform generator (Tektronix AFG3252); AMP1, RF amplifier (AR, 25A250A); AMP2, RF amplifier (AR, 75A250A); Gate, customized gating circuit.

Fig. 5
Fig. 5

(a) Averaged power spectrum with two acoustic foci. (b) Averaged power spectrum with one acoustic focus.

Fig. 6
Fig. 6

(a) Direct widefield image of the fluorescent structure before the second tissue phantom was added. (b) Direct widefield image convolved with the PSF (FWHM 38 microns) of the DOPC system. (c) Resampled version of (b), pixel size 25 microns. (d) Direct widefield image of the fluorescent structure completely embedded in the tissue phantom. (e) Fluorescence image of the fluorescent structure using DOPC with two ultrasound foci. (f) Resampled version of (e). (g) Fluorescence image of the fluorescent structure using DOPC with one ultrasound focus. (h) Resampled version of (g). Scalebar: 100 microns. Colorbar in arbitrary units. (e)-(h) have identical intensity scale, and (a)-(d) are normalized to the same scale.

Metrics