Abstract

We propose a scheme for subwavelength electromagnetic switch by employing nonlinear meta-atom. Bistable response is conceptually demonstrated on a microwave transmission line, which is side-coupled to a varactor-loaded split ring resonator acting as a nonlinear meta-atom. Calculations and experiments show that by applying conductive coupling instead of near-field interaction between the transmission line and the nonlinear meta-atom, switch performances are improved. The switch threshold of low to −5.8 dBm and the transmission contrast of up to 4.0 dB between the two bistable states were achieved. Subwavelength size of our switch should be useful for miniaturization of integrated optical nanocircuits.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett.36(19), 1135–1138 (1976).
    [CrossRef]
  2. T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferrometer,” Phys. Rev. A19(3), 1169–1176 (1979).
    [CrossRef]
  3. H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett.35(5), 379–381 (1979).
    [CrossRef]
  4. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B19(9), 2241–2249 (2002).
    [CrossRef]
  5. A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
    [CrossRef]
  6. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(5), 055601 (2002).
    [CrossRef] [PubMed]
  7. M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739 (2003).
    [CrossRef]
  8. T. Ebbesen, C. Genet, and S. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
    [CrossRef]
  9. N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
    [CrossRef] [PubMed]
  10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  11. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  12. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  13. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
    [CrossRef]
  14. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88(4), 041109 (2006).
    [CrossRef]
  15. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett.91(3), 037401 (2003).
    [CrossRef] [PubMed]
  16. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express14(20), 9344–9349 (2006).
    [CrossRef] [PubMed]
  17. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express15(8), 5238–5247 (2007).
    [CrossRef] [PubMed]
  18. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonlinear properties of split-ring resonators,” Opt. Express16(20), 16058–16063 (2008).
    [CrossRef] [PubMed]
  19. A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett.107(6), 063902 (2011).
    [CrossRef] [PubMed]
  20. E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New J. Phys.12(9), 093010 (2010).
    [CrossRef]
  21. P. Gay-Balmaz and O. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys.92(5), 2929–2936 (2002).
    [CrossRef]
  22. T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett.93(10), 107402 (2004).
    [CrossRef] [PubMed]
  23. Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys.44(42), 425303 (2011).
    [CrossRef]
  24. C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100(11), 111111 (2012).
    [CrossRef]
  25. P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
    [CrossRef]

2012 (1)

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100(11), 111111 (2012).
[CrossRef]

2011 (2)

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett.107(6), 063902 (2011).
[CrossRef] [PubMed]

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys.44(42), 425303 (2011).
[CrossRef]

2010 (1)

E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New J. Phys.12(9), 093010 (2010).
[CrossRef]

2008 (2)

2007 (2)

2006 (4)

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88(4), 041109 (2006).
[CrossRef]

I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express14(20), 9344–9349 (2006).
[CrossRef] [PubMed]

2004 (1)

T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett.93(10), 107402 (2004).
[CrossRef] [PubMed]

2003 (2)

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett.91(3), 037401 (2003).
[CrossRef] [PubMed]

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739 (2003).
[CrossRef]

2002 (3)

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(5), 055601 (2002).
[CrossRef] [PubMed]

P. Gay-Balmaz and O. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys.92(5), 2929–2936 (2002).
[CrossRef]

S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B19(9), 2241–2249 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

1998 (1)

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

1979 (2)

T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferrometer,” Phys. Rev. A19(3), 1169–1176 (1979).
[CrossRef]

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett.35(5), 379–381 (1979).
[CrossRef]

1976 (1)

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett.36(19), 1135–1138 (1976).
[CrossRef]

Arnold, C.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100(11), 111111 (2012).
[CrossRef]

Ben Bakir, B.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
[CrossRef]

Bischofberger, T.

T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferrometer,” Phys. Rev. A19(3), 1169–1176 (1979).
[CrossRef]

Bozhevolnyi, S.

T. Ebbesen, C. Genet, and S. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

Chakraborty, P.

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

Di Cioccio, L.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
[CrossRef]

Ebbesen, T.

T. Ebbesen, C. Genet, and S. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

Economou, E. N.

T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett.93(10), 107402 (2004).
[CrossRef] [PubMed]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

Fan, S.

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739 (2003).
[CrossRef]

Fan, Y.

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys.44(42), 425303 (2011).
[CrossRef]

Fedeli, J. M.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
[CrossRef]

Feth, N.

Fink, Y.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(5), 055601 (2002).
[CrossRef] [PubMed]

Garmire, E.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett.35(5), 379–381 (1979).
[CrossRef]

Gay-Balmaz, P.

P. Gay-Balmaz and O. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys.92(5), 2929–2936 (2002).
[CrossRef]

Genet, C.

T. Ebbesen, C. Genet, and S. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett.36(19), 1135–1138 (1976).
[CrossRef]

Han, J.

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys.44(42), 425303 (2011).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Huang, D.

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett.107(6), 063902 (2011).
[CrossRef] [PubMed]

E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New J. Phys.12(9), 093010 (2010).
[CrossRef]

Ibanescu, M.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(5), 055601 (2002).
[CrossRef] [PubMed]

Joannopoulos, J. D.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(5), 055601 (2002).
[CrossRef] [PubMed]

Johnson, S. G.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(5), 055601 (2002).
[CrossRef] [PubMed]

Kafesaki, M.

T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett.93(10), 107402 (2004).
[CrossRef] [PubMed]

Kivshar, Y. S.

Klein, M. W.

Koschny, T.

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonlinear properties of split-ring resonators,” Opt. Express16(20), 16058–16063 (2008).
[CrossRef] [PubMed]

T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett.93(10), 107402 (2004).
[CrossRef] [PubMed]

Krebs, O.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100(11), 111111 (2012).
[CrossRef]

Lanco, L.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100(11), 111111 (2012).
[CrossRef]

Lemaître, A.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100(11), 111111 (2012).
[CrossRef]

Letartre, X.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
[CrossRef]

Levenson, A.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
[CrossRef]

Li, H.

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys.44(42), 425303 (2011).
[CrossRef]

Linden, S.

Liu, X.

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys.44(42), 425303 (2011).
[CrossRef]

Loo, V.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100(11), 111111 (2012).
[CrossRef]

Marburger, J. H.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett.35(5), 379–381 (1979).
[CrossRef]

Martin, O.

P. Gay-Balmaz and O. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys.92(5), 2929–2936 (2002).
[CrossRef]

McCall, S. L.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett.36(19), 1135–1138 (1976).
[CrossRef]

Mingaleev, S. F.

Mock, J. J.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88(4), 041109 (2006).
[CrossRef]

Monnier, P.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
[CrossRef]

Morrison, S. K.

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Poutrina, E.

E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New J. Phys.12(9), 093010 (2010).
[CrossRef]

Raineri, F.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
[CrossRef]

Raj, R.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Rose, A.

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett.107(6), 063902 (2011).
[CrossRef] [PubMed]

Sagnes, I.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100(11), 111111 (2012).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88(4), 041109 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Seassal, C.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
[CrossRef]

Senellart, P.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100(11), 111111 (2012).
[CrossRef]

Shadrivov, I. V.

I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express14(20), 9344–9349 (2006).
[CrossRef] [PubMed]

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett.91(3), 037401 (2003).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Shen, Y. R.

T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferrometer,” Phys. Rev. A19(3), 1169–1176 (1979).
[CrossRef]

Smith, D. R.

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett.107(6), 063902 (2011).
[CrossRef] [PubMed]

E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New J. Phys.12(9), 093010 (2010).
[CrossRef]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88(4), 041109 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Soljacic, M.

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739 (2003).
[CrossRef]

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(5), 055601 (2002).
[CrossRef] [PubMed]

Soukoulis, C. M.

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonlinear properties of split-ring resonators,” Opt. Express16(20), 16058–16063 (2008).
[CrossRef] [PubMed]

T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett.93(10), 107402 (2004).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Vecchi, G.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
[CrossRef]

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett.36(19), 1135–1138 (1976).
[CrossRef]

Viktorovitch, P.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
[CrossRef]

Voisin, P.

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100(11), 111111 (2012).
[CrossRef]

Wang, B.

Wegener, M.

Wei, Z.

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys.44(42), 425303 (2011).
[CrossRef]

Winful, H. G.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett.35(5), 379–381 (1979).
[CrossRef]

Yacomotti, A. M.

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
[CrossRef]

Yanik, M. F.

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739 (2003).
[CrossRef]

Zharov, A. A.

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett.91(3), 037401 (2003).
[CrossRef] [PubMed]

Zhou, J.

Appl. Phys. Lett. (5)

A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006).
[CrossRef]

M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739 (2003).
[CrossRef]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88(4), 041109 (2006).
[CrossRef]

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett.35(5), 379–381 (1979).
[CrossRef]

C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100(11), 111111 (2012).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. Appl. Phys. (1)

P. Gay-Balmaz and O. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys.92(5), 2929–2936 (2002).
[CrossRef]

J. Mater. Sci. (1)

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys.44(42), 425303 (2011).
[CrossRef]

New J. Phys. (1)

E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New J. Phys.12(9), 093010 (2010).
[CrossRef]

Opt. Express (3)

Phys. Rev. A (1)

T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferrometer,” Phys. Rev. A19(3), 1169–1176 (1979).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(5), 055601 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett.91(3), 037401 (2003).
[CrossRef] [PubMed]

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett.36(19), 1135–1138 (1976).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett.107(6), 063902 (2011).
[CrossRef] [PubMed]

T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett.93(10), 107402 (2004).
[CrossRef] [PubMed]

Phys. Today (1)

T. Ebbesen, C. Genet, and S. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008).
[CrossRef]

Science (3)

N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of our all-optical subwavelength switch model. The nonlinear meta-atom, which has a resonance frequency of ω res , is side-coupled to a two-port waveguide. (b) Photograph of one sample. The varactor is mounted onto the slit of the SRR, and a slim metal strip is used to enhance the coupling between the SRR and microstrip, as shown in the inset.

Fig. 2
Fig. 2

(a) Calculated transmission spectra of the samples loading an ideal capacitor with different coupling mechanism. With the slim metal strip, the transmission at the dip of 0.77 GHz is much lower than that at the dip of 0.83 GHz when the slim strip is removed. (b-d) Numerical surface current distributions for different resonant modes: (b) without the slim strip. (c, d) for the magnetic and electrical resonances with the slim strip, respectively.

Fig. 3
Fig. 3

Measured transmission around the magnetic resonance with respect to the input power. The inset is the transmission around the electrical resonance.

Fig. 4
Fig. 4

Hysteresis effects in frequency sweeping at different input power levels. The lowest bistable threshold is only −5.8 dBm.

Fig. 5
Fig. 5

Measured transmission spectra at 0.74 GHz as a function of input power from −6 dBm to −4.5 dBm. The black inverse-triangular and red triangular are respected to forward (increasing) and reverse (decreasing) power sweep, respectively.

Metrics