Abstract

Highly efficient, laser-diode pumped Yb:YAG/Cr,Yb:YAG self-Q-switched microchip lasers by bonding Yb:YAG crystal have been demonstrated for the first time to our best knowledge. The effect of transmission of output coupler (Toc) on the enhanced performance of Yb:YAG/Cr,Yb:YAG microchip lasers has been investigated and found that the best laser performance was achieved with Toc = 50%. Slope efficiency of over 38% was achieved. Average output power of 0.8 W was obtained at absorbed pump power of 2.5 W; corresponding optical-to-optical efficiency of 32% was obtained. Laser pulses with pulse width of 1.68 ns, pulse energy of 12.4 μJ, and peak power of 7.4 kW were obtained. The lasers oscillated in multi-longitudinal modes. The wide separation of longitudinal modes was attributed to the mode selection by combined etalon effect of Cr,Yb:YAG, Yb:YAG thin plates and output coupler. Stable periodical pulse trains at different pump power levels have been observed owing to the longitudinal modes coupling and competition.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett.4(4), 322–327 (2007).
    [CrossRef]
  2. J. J. Zayhowski, “Microchip lasers,” Opt. Mater.11(2-3), 255–267 (1999).
    [CrossRef]
  3. J. J. Zayhowski, “Q-switched microchip lasers find real-world application,” Laser Focus World35, 129–136 (1999).
  4. P. Wang, S. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun.114(5-6), 439–441 (1995).
    [CrossRef]
  5. J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, and W. Chen, “Laser-diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett.25(15), 1101–1103 (2000).
    [CrossRef] [PubMed]
  6. J. Dong, P. Deng, Y. Liu, Y. Zhang, G. Huang, and F. Gan, “Performance of the self-Q-switched Cr,Yb:YAG laser,” Chin. Phys. Lett.19(3), 342–344 (2002).
    [CrossRef]
  7. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett.19(17), 1343–1345 (1994).
    [CrossRef] [PubMed]
  8. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron.29(6), 1457–1459 (1993).
    [CrossRef]
  9. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997).
    [CrossRef]
  10. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on the temperature and concentration in ytterbium aluminum garnet,” J. Opt. Soc. Am. B20(9), 1975–1979 (2003).
    [CrossRef]
  11. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
    [CrossRef]
  12. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
    [CrossRef]
  13. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
    [CrossRef]
  14. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW Thin Disc laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
    [CrossRef]
  15. A. G. Wang and Y. Li, L., and F. X. H., “Quasi-three-level thin-disk laser at 1024 nm based on diode-pumped Yb:YAG crystal,” Laser Phys. Lett.8, 508–511 (2011).
  16. E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, “High-power dual-rod Yb:YAG laser,” Opt. Lett.25(11), 805–807 (2000).
    [CrossRef] [PubMed]
  17. J. Dong, A. Shirakawa, K. Ueda, J. Xu, and P. Deng, “Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique,” Appl. Phys. Lett.88(16), 161115 (2006).
    [CrossRef]
  18. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).
    [CrossRef]
  19. T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, “Edge-pumped quasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron.36(2), 205–219 (2000).
    [CrossRef]
  20. J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively-Q-switched Yb:YAG laser with Cr4+:YAG as a saturable absorber,” Appl. Opt.40(24), 4303–4307 (2001).
    [CrossRef] [PubMed]
  21. J. Dong, P. Deng, and J. Xu, “The growth of Cr4+,Yb3+:yttrium aluminum garnet(YAG) crystal and its absorption spectra properties,” J. Cryst. Growth203(1-2), 163–167 (1999).
    [CrossRef]
  22. J. Dong and P. Deng, “The effect of Cr concentration on emission cross section and fluorescence lifetime in Cr,Yb:YAG crystal,” J. Lumin.104(1-2), 151–158 (2003).
    [CrossRef]
  23. J. Dong, A. Shirakawa, S. Huang, Y. Feng, T. Takaichi, M. Musha, K. Ueda, and A. A. Kaminskii, “Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser,” Laser Phys. Lett.2(8), 387–391 (2005).
    [CrossRef]
  24. H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12.,” Phys. Rev. B Condens. Matter49(22), 15505–15513 (1994).
    [CrossRef] [PubMed]
  25. R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater.24(1-2), 333–344 (2003).
    [CrossRef]
  26. J. Y. Zhou, J. Ma, J. Dong, Y. Cheng, K. Ueda, and A. A. Kaminskii, “Efficient, nanosecond self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG crystal,” Laser Phys. Lett.8(8), 591–597 (2011).
    [CrossRef]
  27. J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett.8(12), 845–852 (2011).
    [CrossRef]
  28. W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999).
  29. J. Dong and P. Deng, “Temperature dependent emission cross-section and fluorescence lifetime of Cr,Yb:YAG crystals,” J. Phys. Chem. Solids64(7), 1163–1171 (2003).
    [CrossRef]
  30. J. Dong, “Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun.226(1-6), 337–344 (2003).
    [CrossRef]
  31. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron.31(11), 1890–1901 (1995).
    [CrossRef]

2011

A. G. Wang and Y. Li, L., and F. X. H., “Quasi-three-level thin-disk laser at 1024 nm based on diode-pumped Yb:YAG crystal,” Laser Phys. Lett.8, 508–511 (2011).

J. Y. Zhou, J. Ma, J. Dong, Y. Cheng, K. Ueda, and A. A. Kaminskii, “Efficient, nanosecond self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG crystal,” Laser Phys. Lett.8(8), 591–597 (2011).
[CrossRef]

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett.8(12), 845–852 (2011).
[CrossRef]

2010

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

2007

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett.4(4), 322–327 (2007).
[CrossRef]

2006

J. Dong, A. Shirakawa, K. Ueda, J. Xu, and P. Deng, “Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique,” Appl. Phys. Lett.88(16), 161115 (2006).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).
[CrossRef]

2005

J. Dong, A. Shirakawa, S. Huang, Y. Feng, T. Takaichi, M. Musha, K. Ueda, and A. A. Kaminskii, “Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser,” Laser Phys. Lett.2(8), 387–391 (2005).
[CrossRef]

2003

J. Dong and P. Deng, “Temperature dependent emission cross-section and fluorescence lifetime of Cr,Yb:YAG crystals,” J. Phys. Chem. Solids64(7), 1163–1171 (2003).
[CrossRef]

J. Dong, “Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun.226(1-6), 337–344 (2003).
[CrossRef]

J. Dong and P. Deng, “The effect of Cr concentration on emission cross section and fluorescence lifetime in Cr,Yb:YAG crystal,” J. Lumin.104(1-2), 151–158 (2003).
[CrossRef]

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater.24(1-2), 333–344 (2003).
[CrossRef]

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on the temperature and concentration in ytterbium aluminum garnet,” J. Opt. Soc. Am. B20(9), 1975–1979 (2003).
[CrossRef]

2002

J. Dong, P. Deng, Y. Liu, Y. Zhang, G. Huang, and F. Gan, “Performance of the self-Q-switched Cr,Yb:YAG laser,” Chin. Phys. Lett.19(3), 342–344 (2002).
[CrossRef]

2001

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively-Q-switched Yb:YAG laser with Cr4+:YAG as a saturable absorber,” Appl. Opt.40(24), 4303–4307 (2001).
[CrossRef] [PubMed]

2000

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW Thin Disc laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
[CrossRef]

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, “Edge-pumped quasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron.36(2), 205–219 (2000).
[CrossRef]

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, “High-power dual-rod Yb:YAG laser,” Opt. Lett.25(11), 805–807 (2000).
[CrossRef] [PubMed]

J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, and W. Chen, “Laser-diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett.25(15), 1101–1103 (2000).
[CrossRef] [PubMed]

1999

J. J. Zayhowski, “Microchip lasers,” Opt. Mater.11(2-3), 255–267 (1999).
[CrossRef]

J. J. Zayhowski, “Q-switched microchip lasers find real-world application,” Laser Focus World35, 129–136 (1999).

J. Dong, P. Deng, and J. Xu, “The growth of Cr4+,Yb3+:yttrium aluminum garnet(YAG) crystal and its absorption spectra properties,” J. Cryst. Growth203(1-2), 163–167 (1999).
[CrossRef]

1997

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997).
[CrossRef]

1995

P. Wang, S. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun.114(5-6), 439–441 (1995).
[CrossRef]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron.31(11), 1890–1901 (1995).
[CrossRef]

1994

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12.,” Phys. Rev. B Condens. Matter49(22), 15505–15513 (1994).
[CrossRef] [PubMed]

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett.19(17), 1343–1345 (1994).
[CrossRef] [PubMed]

1993

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron.29(6), 1457–1459 (1993).
[CrossRef]

Avizonis, P. V.

Bass, M.

Beach, R. J.

Bruesselbach, H. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997).
[CrossRef]

Burshtein, Z.

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater.24(1-2), 333–344 (2003).
[CrossRef]

Byer, R. L.

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, “Edge-pumped quasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron.36(2), 205–219 (2000).
[CrossRef]

Byren, R. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997).
[CrossRef]

Chen, W.

Chen, Y. C.

P. Wang, S. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun.114(5-6), 439–441 (1995).
[CrossRef]

Cheng, Y.

J. Y. Zhou, J. Ma, J. Dong, Y. Cheng, K. Ueda, and A. A. Kaminskii, “Efficient, nanosecond self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG crystal,” Laser Phys. Lett.8(8), 591–597 (2011).
[CrossRef]

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett.8(12), 845–852 (2011).
[CrossRef]

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW Thin Disc laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
[CrossRef]

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron.31(11), 1890–1901 (1995).
[CrossRef]

Deng, P.

J. Dong, A. Shirakawa, K. Ueda, J. Xu, and P. Deng, “Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique,” Appl. Phys. Lett.88(16), 161115 (2006).
[CrossRef]

J. Dong and P. Deng, “The effect of Cr concentration on emission cross section and fluorescence lifetime in Cr,Yb:YAG crystal,” J. Lumin.104(1-2), 151–158 (2003).
[CrossRef]

J. Dong and P. Deng, “Temperature dependent emission cross-section and fluorescence lifetime of Cr,Yb:YAG crystals,” J. Phys. Chem. Solids64(7), 1163–1171 (2003).
[CrossRef]

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on the temperature and concentration in ytterbium aluminum garnet,” J. Opt. Soc. Am. B20(9), 1975–1979 (2003).
[CrossRef]

J. Dong, P. Deng, Y. Liu, Y. Zhang, G. Huang, and F. Gan, “Performance of the self-Q-switched Cr,Yb:YAG laser,” Chin. Phys. Lett.19(3), 342–344 (2002).
[CrossRef]

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively-Q-switched Yb:YAG laser with Cr4+:YAG as a saturable absorber,” Appl. Opt.40(24), 4303–4307 (2001).
[CrossRef] [PubMed]

J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, and W. Chen, “Laser-diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett.25(15), 1101–1103 (2000).
[CrossRef] [PubMed]

J. Dong, P. Deng, and J. Xu, “The growth of Cr4+,Yb3+:yttrium aluminum garnet(YAG) crystal and its absorption spectra properties,” J. Cryst. Growth203(1-2), 163–167 (1999).
[CrossRef]

Dong, J.

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett.8(12), 845–852 (2011).
[CrossRef]

J. Y. Zhou, J. Ma, J. Dong, Y. Cheng, K. Ueda, and A. A. Kaminskii, “Efficient, nanosecond self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG crystal,” Laser Phys. Lett.8(8), 591–597 (2011).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, J. Xu, and P. Deng, “Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique,” Appl. Phys. Lett.88(16), 161115 (2006).
[CrossRef]

J. Dong, A. Shirakawa, S. Huang, Y. Feng, T. Takaichi, M. Musha, K. Ueda, and A. A. Kaminskii, “Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser,” Laser Phys. Lett.2(8), 387–391 (2005).
[CrossRef]

J. Dong and P. Deng, “The effect of Cr concentration on emission cross section and fluorescence lifetime in Cr,Yb:YAG crystal,” J. Lumin.104(1-2), 151–158 (2003).
[CrossRef]

J. Dong, “Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun.226(1-6), 337–344 (2003).
[CrossRef]

J. Dong and P. Deng, “Temperature dependent emission cross-section and fluorescence lifetime of Cr,Yb:YAG crystals,” J. Phys. Chem. Solids64(7), 1163–1171 (2003).
[CrossRef]

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on the temperature and concentration in ytterbium aluminum garnet,” J. Opt. Soc. Am. B20(9), 1975–1979 (2003).
[CrossRef]

J. Dong, P. Deng, Y. Liu, Y. Zhang, G. Huang, and F. Gan, “Performance of the self-Q-switched Cr,Yb:YAG laser,” Chin. Phys. Lett.19(3), 342–344 (2002).
[CrossRef]

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively-Q-switched Yb:YAG laser with Cr4+:YAG as a saturable absorber,” Appl. Opt.40(24), 4303–4307 (2001).
[CrossRef] [PubMed]

J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, and W. Chen, “Laser-diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett.25(15), 1101–1103 (2000).
[CrossRef] [PubMed]

J. Dong, P. Deng, and J. Xu, “The growth of Cr4+,Yb3+:yttrium aluminum garnet(YAG) crystal and its absorption spectra properties,” J. Cryst. Growth203(1-2), 163–167 (1999).
[CrossRef]

Eilers, H.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12.,” Phys. Rev. B Condens. Matter49(22), 15505–15513 (1994).
[CrossRef] [PubMed]

Emanuel, M. A.

Equall, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Fan, T. Y.

Feldman, R.

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater.24(1-2), 333–344 (2003).
[CrossRef]

Feng, Y.

J. Dong, A. Shirakawa, S. Huang, Y. Feng, T. Takaichi, M. Musha, K. Ueda, and A. A. Kaminskii, “Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser,” Laser Phys. Lett.2(8), 387–391 (2005).
[CrossRef]

Gan, F.

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW Thin Disc laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
[CrossRef]

Gustafson, E. K.

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, “Edge-pumped quasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron.36(2), 205–219 (2000).
[CrossRef]

Harris, D. G.

Herdin, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett.4(4), 322–327 (2007).
[CrossRef]

Hoffman, K. R.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12.,” Phys. Rev. B Condens. Matter49(22), 15505–15513 (1994).
[CrossRef] [PubMed]

Hömmerich, U.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12.,” Phys. Rev. B Condens. Matter49(22), 15505–15513 (1994).
[CrossRef] [PubMed]

Honea, E. C.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, “High-power dual-rod Yb:YAG laser,” Opt. Lett.25(11), 805–807 (2000).
[CrossRef] [PubMed]

Huang, G.

J. Dong, P. Deng, Y. Liu, Y. Zhang, G. Huang, and F. Gan, “Performance of the self-Q-switched Cr,Yb:YAG laser,” Chin. Phys. Lett.19(3), 342–344 (2002).
[CrossRef]

Huang, S.

J. Dong, A. Shirakawa, S. Huang, Y. Feng, T. Takaichi, M. Musha, K. Ueda, and A. A. Kaminskii, “Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser,” Laser Phys. Lett.2(8), 387–391 (2005).
[CrossRef]

Hugel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW Thin Disc laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
[CrossRef]

Hutcheson, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Iskra, K.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett.4(4), 322–327 (2007).
[CrossRef]

Jacobsen, S. M.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12.,” Phys. Rev. B Condens. Matter49(22), 15505–15513 (1994).
[CrossRef] [PubMed]

Jia, W.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12.,” Phys. Rev. B Condens. Matter49(22), 15505–15513 (1994).
[CrossRef] [PubMed]

Kaminskii, A. A.

J. Y. Zhou, J. Ma, J. Dong, Y. Cheng, K. Ueda, and A. A. Kaminskii, “Efficient, nanosecond self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG crystal,” Laser Phys. Lett.8(8), 591–597 (2011).
[CrossRef]

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett.8(12), 845–852 (2011).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).
[CrossRef]

J. Dong, A. Shirakawa, S. Huang, Y. Feng, T. Takaichi, M. Musha, K. Ueda, and A. A. Kaminskii, “Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser,” Laser Phys. Lett.2(8), 387–391 (2005).
[CrossRef]

Kan, H.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Kawanaka, J.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Kawashima, T.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Klausner, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett.4(4), 322–327 (2007).
[CrossRef]

Kofler, H.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett.4(4), 322–327 (2007).
[CrossRef]

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW Thin Disc laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
[CrossRef]

Lee, K. K.

P. Wang, S. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun.114(5-6), 439–441 (1995).
[CrossRef]

Li, Y.

A. G. Wang and Y. Li, L., and F. X. H., “Quasi-three-level thin-disk laser at 1024 nm based on diode-pumped Yb:YAG crystal,” Laser Phys. Lett.8, 508–511 (2011).

Liu, Y.

Lu, Y.

Ma, J.

J. Y. Zhou, J. Ma, J. Dong, Y. Cheng, K. Ueda, and A. A. Kaminskii, “Efficient, nanosecond self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG crystal,” Laser Phys. Lett.8(8), 591–597 (2011).
[CrossRef]

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett.8(12), 845–852 (2011).
[CrossRef]

Mao, Y.

Mitchell, S. C.

Monroe, R. S.

Musha, M.

J. Dong, A. Shirakawa, S. Huang, Y. Feng, T. Takaichi, M. Musha, K. Ueda, and A. A. Kaminskii, “Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser,” Laser Phys. Lett.2(8), 387–391 (2005).
[CrossRef]

Patel, F. D.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Payne, S. A.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, “High-power dual-rod Yb:YAG laser,” Opt. Lett.25(11), 805–807 (2000).
[CrossRef] [PubMed]

Pearce, S. J.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Reeder, R. A.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997).
[CrossRef]

Ren, Y. Y.

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett.8(12), 845–852 (2011).
[CrossRef]

Rutherford, T. S.

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, “Edge-pumped quasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron.36(2), 205–219 (2000).
[CrossRef]

Shimony, Y.

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater.24(1-2), 333–344 (2003).
[CrossRef]

Shirakawa, A.

J. Dong, A. Shirakawa, K. Ueda, J. Xu, and P. Deng, “Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique,” Appl. Phys. Lett.88(16), 161115 (2006).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).
[CrossRef]

J. Dong, A. Shirakawa, S. Huang, Y. Feng, T. Takaichi, M. Musha, K. Ueda, and A. A. Kaminskii, “Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser,” Laser Phys. Lett.2(8), 387–391 (2005).
[CrossRef]

Skidmore, J. A.

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

Speth, J.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW Thin Disc laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
[CrossRef]

Sumida, D. S.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997).
[CrossRef]

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett.19(17), 1343–1345 (1994).
[CrossRef] [PubMed]

Sutton, S. B.

Takaichi, T.

J. Dong, A. Shirakawa, S. Huang, Y. Feng, T. Takaichi, M. Musha, K. Ueda, and A. A. Kaminskii, “Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser,” Laser Phys. Lett.2(8), 387–391 (2005).
[CrossRef]

Takeuchi, Y.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Tartar, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett.4(4), 322–327 (2007).
[CrossRef]

Tauer, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett.4(4), 322–327 (2007).
[CrossRef]

Tulloch, W. M.

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, “Edge-pumped quasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron.36(2), 205–219 (2000).
[CrossRef]

Ueda, K.

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett.8(12), 845–852 (2011).
[CrossRef]

J. Y. Zhou, J. Ma, J. Dong, Y. Cheng, K. Ueda, and A. A. Kaminskii, “Efficient, nanosecond self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG crystal,” Laser Phys. Lett.8(8), 591–597 (2011).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, J. Xu, and P. Deng, “Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique,” Appl. Phys. Lett.88(16), 161115 (2006).
[CrossRef]

J. Dong, A. Shirakawa, S. Huang, Y. Feng, T. Takaichi, M. Musha, K. Ueda, and A. A. Kaminskii, “Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser,” Laser Phys. Lett.2(8), 387–391 (2005).
[CrossRef]

Wang, A. G.

A. G. Wang and Y. Li, L., and F. X. H., “Quasi-three-level thin-disk laser at 1024 nm based on diode-pumped Yb:YAG crystal,” Laser Phys. Lett.8, 508–511 (2011).

Wang, P.

P. Wang, S. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun.114(5-6), 439–441 (1995).
[CrossRef]

Wintner, E.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett.4(4), 322–327 (2007).
[CrossRef]

Xie, X.

Xu, J.

J. Dong, A. Shirakawa, K. Ueda, J. Xu, and P. Deng, “Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique,” Appl. Phys. Lett.88(16), 161115 (2006).
[CrossRef]

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively-Q-switched Yb:YAG laser with Cr4+:YAG as a saturable absorber,” Appl. Opt.40(24), 4303–4307 (2001).
[CrossRef] [PubMed]

J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, and W. Chen, “Laser-diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett.25(15), 1101–1103 (2000).
[CrossRef] [PubMed]

J. Dong, P. Deng, and J. Xu, “The growth of Cr4+,Yb3+:yttrium aluminum garnet(YAG) crystal and its absorption spectra properties,” J. Cryst. Growth203(1-2), 163–167 (1999).
[CrossRef]

Yagi, H.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).
[CrossRef]

Yanagitani, T.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).
[CrossRef]

Yasuhara, R.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Yen, W. M.

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12.,” Phys. Rev. B Condens. Matter49(22), 15505–15513 (1994).
[CrossRef] [PubMed]

Yoshida, A.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski, “Microchip lasers,” Opt. Mater.11(2-3), 255–267 (1999).
[CrossRef]

J. J. Zayhowski, “Q-switched microchip lasers find real-world application,” Laser Focus World35, 129–136 (1999).

Zhang, Y.

Zhou, J. Y.

J. Y. Zhou, J. Ma, J. Dong, Y. Cheng, K. Ueda, and A. A. Kaminskii, “Efficient, nanosecond self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG crystal,” Laser Phys. Lett.8(8), 591–597 (2011).
[CrossRef]

Zhou, S.

P. Wang, S. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun.114(5-6), 439–441 (1995).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Dong, A. Shirakawa, K. Ueda, J. Xu, and P. Deng, “Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique,” Appl. Phys. Lett.88(16), 161115 (2006).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).
[CrossRef]

Chin. Phys. Lett.

J. Dong, P. Deng, Y. Liu, Y. Zhang, G. Huang, and F. Gan, “Performance of the self-Q-switched Cr,Yb:YAG laser,” Chin. Phys. Lett.19(3), 342–344 (2002).
[CrossRef]

IEEE J. Quantum Electron.

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron.29(6), 1457–1459 (1993).
[CrossRef]

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, “Edge-pumped quasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron.36(2), 205–219 (2000).
[CrossRef]

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron.31(11), 1890–1901 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007).
[CrossRef]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW Thin Disc laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000).
[CrossRef]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997).
[CrossRef]

J. Cryst. Growth

J. Dong, P. Deng, and J. Xu, “The growth of Cr4+,Yb3+:yttrium aluminum garnet(YAG) crystal and its absorption spectra properties,” J. Cryst. Growth203(1-2), 163–167 (1999).
[CrossRef]

J. Lumin.

J. Dong and P. Deng, “The effect of Cr concentration on emission cross section and fluorescence lifetime in Cr,Yb:YAG crystal,” J. Lumin.104(1-2), 151–158 (2003).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

J. Dong and P. Deng, “Temperature dependent emission cross-section and fluorescence lifetime of Cr,Yb:YAG crystals,” J. Phys. Chem. Solids64(7), 1163–1171 (2003).
[CrossRef]

Laser Focus World

J. J. Zayhowski, “Q-switched microchip lasers find real-world application,” Laser Focus World35, 129–136 (1999).

Laser Phys.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Laser Phys. Lett.

A. G. Wang and Y. Li, L., and F. X. H., “Quasi-three-level thin-disk laser at 1024 nm based on diode-pumped Yb:YAG crystal,” Laser Phys. Lett.8, 508–511 (2011).

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett.4(4), 322–327 (2007).
[CrossRef]

J. Y. Zhou, J. Ma, J. Dong, Y. Cheng, K. Ueda, and A. A. Kaminskii, “Efficient, nanosecond self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG crystal,” Laser Phys. Lett.8(8), 591–597 (2011).
[CrossRef]

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett.8(12), 845–852 (2011).
[CrossRef]

J. Dong, A. Shirakawa, S. Huang, Y. Feng, T. Takaichi, M. Musha, K. Ueda, and A. A. Kaminskii, “Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser,” Laser Phys. Lett.2(8), 387–391 (2005).
[CrossRef]

Opt. Commun.

J. Dong, “Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun.226(1-6), 337–344 (2003).
[CrossRef]

P. Wang, S. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun.114(5-6), 439–441 (1995).
[CrossRef]

Opt. Lett.

Opt. Mater.

J. J. Zayhowski, “Microchip lasers,” Opt. Mater.11(2-3), 255–267 (1999).
[CrossRef]

R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater.24(1-2), 333–344 (2003).
[CrossRef]

Phys. Rev. B Condens. Matter

H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12.,” Phys. Rev. B Condens. Matter49(22), 15505–15513 (1994).
[CrossRef] [PubMed]

Other

W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of experimental setup for laser-diode pumped Yb:YAG/Cr,Yb:YAG self-Q-switched microchip laser. OC is the output coupler.

Fig. 2
Fig. 2

Average output power of Yb:YAG/Cr,Yb:YAG self-Q-switched microchip lasers as a function of the absorbed pump power for different transmission of output coupler, Toc; together with the optical-to-optical efficiency as a function of the absorbed pump power for Toc = 50%. The line shows the linearly fitting of experimental data for Toc = 50%.

Fig. 3
Fig. 3

Typical laser emitting spectra of Yb:YAG/Cr,Yb:YAG self-Q-switched microchip laser under different pump power levels for Toc = 50%, (a) Pabs = 0.48 W, (b) Pabs = 1.3 W, (a) Pabs = 2.12 W; (d) Transmittance curves of 0.5-mm-thick Cr,Yb:YAG, 1.2-mm-thick Yb:YAG, 2-mm-thick BK7 glass output coupler (OC), and their transmittance product. Resonant modes are also plotted for illustration.

Fig. 4
Fig. 4

Laser pulse trains of Yb:YAG/Cr,Yb:YAG self-Q-switched microchip laser at different pump power levels for Toc = 50%, (a) Pabs = 0.48 W, (b) Pabs = 1.3 W, (a) Pabs = 2.12 W; and (d) laser pulse profile with 1.68 ns pulse width, pulse energy of 12.4 μJ, and peak power of 7.4 kW.

Fig. 5
Fig. 5

Pulse repetition rate and pulse width of Yb:YAG/Cr,Yb:YAG self-Q-switched microchip laser as a function of the absorbed pump power for Toc = 50%.

Fig. 6
Fig. 6

Pulse energy and peak power of Yb:YAG/Cr,Yb:YAG self-Q-switched microchip laser as a function of the absorbed pump power for Toc = 50%.

Fig. 7
Fig. 7

Pulse characteristics such as pulse energy, peak power, pulse repetition rate, pulse width, average output power, and optical-to-optical efficiency of Yb:YAG/Cr,Yb:YAG self-Q-switched microchip laser as a function of transmission of output coupler when the absorbed pump power was set to 2.5 W. The solid lines were used to illustrate the variation tendency of pulse characteristics with Toc.

Metrics