Abstract

A new scheme is presented for fiber transmission of ultrashort laser pulses. A dispersive device divides the input pulses into spatially separated spectral components which are individually launched in the different channels of a multicore fiber before being recombined at the output by a second dispersive device. The parallel transmission of narrow spectral bands avoids self-phase modulation and could be appropriate to deliver high peak power pulses. Phase management of the spectral bands by an active element offers recovery of the seed pulse duration at the fiber output as well as pulse shaping capabilities. Both are reported in a proof of concept experiment using 190 fs input pulses and a 5 cores polarization maintaining fiber. Extension of the concept to femtosecond pulses amplification is suggested.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Larson and A. T. Yeh, “Delivery of sub-10-fs pulses for nonlinear optical microscopy by polarization-maintaining single mode optical fiber,” Opt. Express16(19), 14723–14730 (2008).
    [CrossRef] [PubMed]
  2. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett.27(17), 1513–1515 (2002).
    [CrossRef] [PubMed]
  3. T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, “Routes to fiber delivery of ultra-short laser pulses in the 25 fs regime,” Opt. Express17(3), 1240–1247 (2009).
    [CrossRef] [PubMed]
  4. S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, “High energy (nJ) femtosecond pulse delivery with record dispersion high order mode fiber,” Opt. Lett.30(23), 3225–3227 (2005).
    [CrossRef] [PubMed]
  5. W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanoJoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett.29(11), 1285–1287 (2004).
    [CrossRef] [PubMed]
  6. S. W. Clark, F. O. Ilday, and F. W. Wise, “Fiber delivery of femtosecond pulses from a Ti:sapphire laser,” Opt. Lett.26(17), 1320–1322 (2001).
    [CrossRef] [PubMed]
  7. M. Lelek, E. Suran, F. Louradour, A. Barthelemy, B. Viellerobe, and F. Lacombe, “Coherent femtosecond pulse shaping for the optimization of a non-linear micro-endoscope,” Opt. Express15(16), 10154–10162 (2007).
    [CrossRef] [PubMed]
  8. F. Luan, J. C. Knight, P. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express12(5), 835–840 (2004).
    [CrossRef] [PubMed]
  9. P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett.107(20), 203901 (2011).
    [CrossRef] [PubMed]
  10. F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization shaped pulses via hollow core photonic crystal fiber,” Phys. Rev. A82(5), 053827 (2010).
    [CrossRef]
  11. B. J. Mangan, A. C. Muir, and J. C. Knight, “Photonic bandgap fiber with multiple hollow cores,” J. Lightwave Technol.28(9), 1287–1290 (2010).
    [CrossRef]
  12. I. Hartl, A. Marcinkevicius, H. A. McKay, L. Dong, and M. E. Fermann, “Coherent beam combination using multicore leakage channel fibers,” in Advanced Solid-State Photonics, Technical Digest Series (Optical Society of America, 2009), paper TuA6.
  13. J. Lhermite, E. Suran, V. Kermène, F. Louradour, A. Desfarges-Berthelemot, and A. Barthélémy, “Coherent combining of 49 laser beams from a multiple core optical fiber by a spatial light modulator,” Opt. Express18(5), 4783–4789 (2010).
    [CrossRef] [PubMed]
  14. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
    [CrossRef]
  15. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, Th. Gabler, Ch. Wirth, Th. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010).
    [CrossRef] [PubMed]
  16. S. Zhou, F. W. Wise, and D. G. Ouzounov, “Divided-pulse amplification of ultrashort pulses,” Opt. Lett.32(7), 871–873 (2007).
    [CrossRef] [PubMed]
  17. Patent pending # WO 2012042141 (A1) FR 2964503 (A1) - Procédé et dispositif d’amplification d’un signal optique.
  18. I. P. Christov, “Amplification of femtosecond pulses in a spatially dispersive scheme,” Opt. Lett.17(10), 742–744 (1992).
    [CrossRef] [PubMed]
  19. W.-Z. Chang, T. Zhou, L. A. Siiman, and A. Galvanauskas, “Femtosecond pulse coherent combining and spectral synthesis using four parallel chirped pulse fiber amplifiers”, in Advanced Solid-State Photonics, Technical Digest Series (Optical Society of America, 2011), paper AM4a.25.

2011

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett.107(20), 203901 (2011).
[CrossRef] [PubMed]

2010

2009

2008

2007

2005

2004

2002

2001

1992

Achazi, G.

F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization shaped pulses via hollow core photonic crystal fiber,” Phys. Rev. A82(5), 053827 (2010).
[CrossRef]

Andersen, T. V.

Barthelemy, A.

Barthélémy, A.

Biancalana, F.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett.107(20), 203901 (2011).
[CrossRef] [PubMed]

Campbell, S.

Chang, W.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett.107(20), 203901 (2011).
[CrossRef] [PubMed]

Cheng, Z.

Christov, I. P.

Clark, S. W.

Desfarges-Berthelemot, A.

Dimarcello, F. V.

Eidam, T.

Foster, M. A.

Gabler, Th.

Gaeta, A. L.

Ghalmi, S.

Göbel, W.

Hanf, S.

Helmchen, F.

Hofer, M.

Hölzer, P.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett.107(20), 203901 (2011).
[CrossRef] [PubMed]

Ilday, F. O.

Jasapara, J.

Joly, N. Y.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett.107(20), 203901 (2011).
[CrossRef] [PubMed]

Kermène, V.

Knight, J. C.

Lacombe, F.

Larson, A. M.

Le, T.

Lelek, M.

Lhermite, J.

Limpert, J.

Lindinger, A.

F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization shaped pulses via hollow core photonic crystal fiber,” Phys. Rev. A82(5), 053827 (2010).
[CrossRef]

Louradour, F.

Luan, F.

Mangan, B. J.

Moll, K. D.

Monberg, E.

Mosk, A. P.

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

Muir, A. C.

Nazarkin, A.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett.107(20), 203901 (2011).
[CrossRef] [PubMed]

Nimmerjahn, A.

Nold, J.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett.107(20), 203901 (2011).
[CrossRef] [PubMed]

Ouzounov, D. G.

Ramachandran, S.

Reid, D. T.

Roberts, P. J.

Russell, P.

Russell, P. S.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett.107(20), 203901 (2011).
[CrossRef] [PubMed]

Saleh, M. F.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett.107(20), 203901 (2011).
[CrossRef] [PubMed]

Schreiber, Th.

Seise, E.

Stingl, A.

Suran, E.

Tempea, G.

Travers, J. C.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett.107(20), 203901 (2011).
[CrossRef] [PubMed]

Tünnermann, A.

Vellekoop, I. M.

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

Viellerobe, B.

Webb, W. W.

Weise, F.

F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization shaped pulses via hollow core photonic crystal fiber,” Phys. Rev. A82(5), 053827 (2010).
[CrossRef]

Williams, D. P.

Wirth, Ch.

Wise, F. W.

Wisk, P.

Xiao, D.

Yan, M. F.

Yeh, A. T.

Zhou, S.

Zipfel, W. R.

J. Lightwave Technol.

Opt. Commun.

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization shaped pulses via hollow core photonic crystal fiber,” Phys. Rev. A82(5), 053827 (2010).
[CrossRef]

Phys. Rev. Lett.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett.107(20), 203901 (2011).
[CrossRef] [PubMed]

Other

I. Hartl, A. Marcinkevicius, H. A. McKay, L. Dong, and M. E. Fermann, “Coherent beam combination using multicore leakage channel fibers,” in Advanced Solid-State Photonics, Technical Digest Series (Optical Society of America, 2009), paper TuA6.

Patent pending # WO 2012042141 (A1) FR 2964503 (A1) - Procédé et dispositif d’amplification d’un signal optique.

W.-Z. Chang, T. Zhou, L. A. Siiman, and A. Galvanauskas, “Femtosecond pulse coherent combining and spectral synthesis using four parallel chirped pulse fiber amplifiers”, in Advanced Solid-State Photonics, Technical Digest Series (Optical Society of America, 2011), paper AM4a.25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawing depicting the setup.

Fig. 2
Fig. 2

Polarization preserving microstructured multicore fiber. Only the 5 cores encircled were used in the experiment. Black parts represent air, grey parts are in silica, dark grey parts represent Boron doped rods as detailed in inset.

Fig. 3
Fig. 3

Experimental spectra (left part) and autocorrelation traces (right part). Top right (a), the spectrum split in five bands fills in the envelope of the initial laser spectrum. In (b) the autocorrelation of the initial laser pulse (290 fs width) is compared to that of pulses in an isolated frequency band (width 930 fs). Figure (c), bottom right, reports the autocorrelation trace of the pulse recovered after transmission through the multicore fiber and coherent superposition of the five spectral components (width 390 fs). The associated spectrum is shown in Figure (d), bottom left. Experimental data in (c) and (d) (empty circles) are in good agreement with simulations (blue traces in continuous and dashed lines).

Fig. 4
Fig. 4

(a) Autocorrelation trace of the output pulse without servo (filled red circle). Trace recorded with phase control (empty red circle) after partial compensation of the differential time delay between the five carrier wavelengths through fiber bending. The width decreased from nearly 2 ps to 327 fs with a 90 fs reduction due to differential time delay compensation. Simulation of the recovered pulse autocorrelation (blue line), assuming compensation of 2/3 of group delay differences, agrees with the observation. (b) Experimental spectrum (empty red circle) corresponding to the autocorrelation trace shown in Fig. 4-a. Theoretical spectral intensity (blue line) and phase (blue dotted line) derived from simulation are given for comparison

Fig. 5
Fig. 5

Autocorrelation traces (left (a) and (c)) of synthesized pulses shaped in a pulse doublet (a) or with a nearly top hat profile (c). The corresponding spectra ((b) connected with case (a) and (d) with case (c)) together with the phase adjustments in the five spectral bands are shown on the right part. Experimental data (empty circles) are in good agreement with simulations (blue traces in continuous and dashed lines).

Metrics