Abstract

A practical physics-based regression method was developed and evaluated for nearly real time estimate of land surface emissivity spectra in 8-14μm from hyperspectral thermal infrared data. Two spectral emissivity libraries and one atmospheric profile database fully covering all the possible situations for clear sky conditions were elaborately selected to simulate the radiances at the top of the atmosphere (TOA). The regression coefficients were determined by the main principal components of emissivity spectra and those of simulated brightness temperature at TOA using a ridge regression method. The experience with the simulated Interferometer Atmospheric Sounding Instrument (IASI) data showed that the emissivity spectra could be retrieved under clear sky conditions with root mean square errors of 0.015 and 0.03 for 714-970cm−1 (10.3-14.0μm) and 970-1250cm−1 (8.0-10.3μm), respectively, for various land surface and atmospheric conditions. This indicates the proposed method may be robust and applicable for all hyperspectral infrared sensors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens.36(4), 1113–1126 (1998).
    [CrossRef]
  2. J. Li, E. Weisz, and D. K. Zhou, “Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances,” Geophys. Res. Lett.34(16), L16812 (2007).
    [CrossRef]
  3. B.-H. Tang, H. Wu, C. Li, and Z.-L. Li, “Estimation of broadband surface emissivity from narrowband emissivities,” Opt. Express19(1), 185–192 (2011).
    [CrossRef] [PubMed]
  4. Z. Wan, “MODIS land-surface temperature algorithm theoretical basis document, version 3.3” (NASA/GSFC, 1999). http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf .
  5. A. R. Gillespie, S. Rokugawa, S. J. Hook, T. Matsunaga, and A. B. Kahle, “Temperature/emissivity separation algorithm theoretical basis document, Version 2.4” (NASA/GSFC, 1996). http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/ASTER/atbd-ast-05-08.pdf .
  6. K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing - a case study in a part of Sahara Desert,” Geophys. Res. Lett.30(2), 1067 (2003).
    [CrossRef]
  7. J. Li and J. L. Li, “Derivation of global hyperspectral resolution surface emissivity spectra from advanced infrared sounder radiance measurements,” Geophys. Res. Lett.35(15), L15807 (2008).
    [CrossRef]
  8. L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Rem. Sens.46(2), 328–333 (2008).
    [CrossRef]
  9. D. K. Zhou, A. M. Larar, X. Liu, W. L. Smith, L. L. Strow, P. Yang, P. Schlüssel, and X. Calbet, “Global land surface emissivity retrieved from satellite ultraspectral IR measurements,” IEEE Trans. Geosci. Rem. Sens.49(4), 1277–1290 (2011).
    [CrossRef]
  10. E. Péquignot, A. Chédin, and N. A. Scott, “Infrared continental surface emissivity spectra retrieved from AIRS hyperspectral sensor,” J. Appl. Meteorol. Climatol.47(6), 1619–1633 (2008).
    [CrossRef]
  11. L. Chaumat, C. Standfuss, B. Tournier, R. Armante, and N. A. Scott, “4A/OP reference documentation” (NOVELTIS, 2012). http://4aop.noveltis.com/sites/4aop.noveltis.loc/files/NOV-3049-NT-1178v4.3.pdf .
  12. J. M. Galve, C. Coll, V. Caselles, and E. Valor, “An atmospheric radiosounding database for generating land surface temperature algorithms,” IEEE Trans. Geosci. Rem. Sens.46(5), 1547–1557 (2008).
    [CrossRef]
  13. F. Aires, W. B. Rossow, N. A. Scott, and A. Chedin, “Remote sensing from the infrared atmospheric sounding interferometer instrument. 1. compression, denoising, and first-guess retrieval algorithms,” J. Geophys. Res.107(D22), 4619 (2002).
    [CrossRef]

2011 (2)

B.-H. Tang, H. Wu, C. Li, and Z.-L. Li, “Estimation of broadband surface emissivity from narrowband emissivities,” Opt. Express19(1), 185–192 (2011).
[CrossRef] [PubMed]

D. K. Zhou, A. M. Larar, X. Liu, W. L. Smith, L. L. Strow, P. Yang, P. Schlüssel, and X. Calbet, “Global land surface emissivity retrieved from satellite ultraspectral IR measurements,” IEEE Trans. Geosci. Rem. Sens.49(4), 1277–1290 (2011).
[CrossRef]

2008 (4)

E. Péquignot, A. Chédin, and N. A. Scott, “Infrared continental surface emissivity spectra retrieved from AIRS hyperspectral sensor,” J. Appl. Meteorol. Climatol.47(6), 1619–1633 (2008).
[CrossRef]

J. M. Galve, C. Coll, V. Caselles, and E. Valor, “An atmospheric radiosounding database for generating land surface temperature algorithms,” IEEE Trans. Geosci. Rem. Sens.46(5), 1547–1557 (2008).
[CrossRef]

J. Li and J. L. Li, “Derivation of global hyperspectral resolution surface emissivity spectra from advanced infrared sounder radiance measurements,” Geophys. Res. Lett.35(15), L15807 (2008).
[CrossRef]

L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Rem. Sens.46(2), 328–333 (2008).
[CrossRef]

2007 (1)

J. Li, E. Weisz, and D. K. Zhou, “Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances,” Geophys. Res. Lett.34(16), L16812 (2007).
[CrossRef]

2003 (1)

K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing - a case study in a part of Sahara Desert,” Geophys. Res. Lett.30(2), 1067 (2003).
[CrossRef]

2002 (1)

F. Aires, W. B. Rossow, N. A. Scott, and A. Chedin, “Remote sensing from the infrared atmospheric sounding interferometer instrument. 1. compression, denoising, and first-guess retrieval algorithms,” J. Geophys. Res.107(D22), 4619 (2002).
[CrossRef]

1998 (1)

A. R. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens.36(4), 1113–1126 (1998).
[CrossRef]

Aires, F.

F. Aires, W. B. Rossow, N. A. Scott, and A. Chedin, “Remote sensing from the infrared atmospheric sounding interferometer instrument. 1. compression, denoising, and first-guess retrieval algorithms,” J. Geophys. Res.107(D22), 4619 (2002).
[CrossRef]

Barnet, C.

L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Rem. Sens.46(2), 328–333 (2008).
[CrossRef]

Calbet, X.

D. K. Zhou, A. M. Larar, X. Liu, W. L. Smith, L. L. Strow, P. Yang, P. Schlüssel, and X. Calbet, “Global land surface emissivity retrieved from satellite ultraspectral IR measurements,” IEEE Trans. Geosci. Rem. Sens.49(4), 1277–1290 (2011).
[CrossRef]

Caselles, V.

J. M. Galve, C. Coll, V. Caselles, and E. Valor, “An atmospheric radiosounding database for generating land surface temperature algorithms,” IEEE Trans. Geosci. Rem. Sens.46(5), 1547–1557 (2008).
[CrossRef]

Chedin, A.

F. Aires, W. B. Rossow, N. A. Scott, and A. Chedin, “Remote sensing from the infrared atmospheric sounding interferometer instrument. 1. compression, denoising, and first-guess retrieval algorithms,” J. Geophys. Res.107(D22), 4619 (2002).
[CrossRef]

Chédin, A.

E. Péquignot, A. Chédin, and N. A. Scott, “Infrared continental surface emissivity spectra retrieved from AIRS hyperspectral sensor,” J. Appl. Meteorol. Climatol.47(6), 1619–1633 (2008).
[CrossRef]

Cheng, Z.

L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Rem. Sens.46(2), 328–333 (2008).
[CrossRef]

Coll, C.

J. M. Galve, C. Coll, V. Caselles, and E. Valor, “An atmospheric radiosounding database for generating land surface temperature algorithms,” IEEE Trans. Geosci. Rem. Sens.46(5), 1547–1557 (2008).
[CrossRef]

Cothern, J. S.

A. R. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens.36(4), 1113–1126 (1998).
[CrossRef]

Divakarla, M.

L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Rem. Sens.46(2), 328–333 (2008).
[CrossRef]

French, A.

K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing - a case study in a part of Sahara Desert,” Geophys. Res. Lett.30(2), 1067 (2003).
[CrossRef]

Galve, J. M.

J. M. Galve, C. Coll, V. Caselles, and E. Valor, “An atmospheric radiosounding database for generating land surface temperature algorithms,” IEEE Trans. Geosci. Rem. Sens.46(5), 1547–1557 (2008).
[CrossRef]

Gillespie, A. R.

A. R. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens.36(4), 1113–1126 (1998).
[CrossRef]

Goldberg, M.

L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Rem. Sens.46(2), 328–333 (2008).
[CrossRef]

Hook, S.

A. R. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens.36(4), 1113–1126 (1998).
[CrossRef]

Jacob, F.

K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing - a case study in a part of Sahara Desert,” Geophys. Res. Lett.30(2), 1067 (2003).
[CrossRef]

Kahle, A. B.

A. R. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens.36(4), 1113–1126 (1998).
[CrossRef]

King, T.

L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Rem. Sens.46(2), 328–333 (2008).
[CrossRef]

Larar, A. M.

D. K. Zhou, A. M. Larar, X. Liu, W. L. Smith, L. L. Strow, P. Yang, P. Schlüssel, and X. Calbet, “Global land surface emissivity retrieved from satellite ultraspectral IR measurements,” IEEE Trans. Geosci. Rem. Sens.49(4), 1277–1290 (2011).
[CrossRef]

Li, C.

Li, J.

J. Li and J. L. Li, “Derivation of global hyperspectral resolution surface emissivity spectra from advanced infrared sounder radiance measurements,” Geophys. Res. Lett.35(15), L15807 (2008).
[CrossRef]

J. Li, E. Weisz, and D. K. Zhou, “Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances,” Geophys. Res. Lett.34(16), L16812 (2007).
[CrossRef]

Li, J. L.

J. Li and J. L. Li, “Derivation of global hyperspectral resolution surface emissivity spectra from advanced infrared sounder radiance measurements,” Geophys. Res. Lett.35(15), L15807 (2008).
[CrossRef]

Li, Z.-L.

Liu, X.

D. K. Zhou, A. M. Larar, X. Liu, W. L. Smith, L. L. Strow, P. Yang, P. Schlüssel, and X. Calbet, “Global land surface emissivity retrieved from satellite ultraspectral IR measurements,” IEEE Trans. Geosci. Rem. Sens.49(4), 1277–1290 (2011).
[CrossRef]

L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Rem. Sens.46(2), 328–333 (2008).
[CrossRef]

Matsunaga, T.

A. R. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens.36(4), 1113–1126 (1998).
[CrossRef]

Ogawa, K.

K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing - a case study in a part of Sahara Desert,” Geophys. Res. Lett.30(2), 1067 (2003).
[CrossRef]

Péquignot, E.

E. Péquignot, A. Chédin, and N. A. Scott, “Infrared continental surface emissivity spectra retrieved from AIRS hyperspectral sensor,” J. Appl. Meteorol. Climatol.47(6), 1619–1633 (2008).
[CrossRef]

Rokugawa, S.

A. R. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens.36(4), 1113–1126 (1998).
[CrossRef]

Rossow, W. B.

F. Aires, W. B. Rossow, N. A. Scott, and A. Chedin, “Remote sensing from the infrared atmospheric sounding interferometer instrument. 1. compression, denoising, and first-guess retrieval algorithms,” J. Geophys. Res.107(D22), 4619 (2002).
[CrossRef]

Schlüssel, P.

D. K. Zhou, A. M. Larar, X. Liu, W. L. Smith, L. L. Strow, P. Yang, P. Schlüssel, and X. Calbet, “Global land surface emissivity retrieved from satellite ultraspectral IR measurements,” IEEE Trans. Geosci. Rem. Sens.49(4), 1277–1290 (2011).
[CrossRef]

Schmugge, T.

K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing - a case study in a part of Sahara Desert,” Geophys. Res. Lett.30(2), 1067 (2003).
[CrossRef]

Scott, N. A.

E. Péquignot, A. Chédin, and N. A. Scott, “Infrared continental surface emissivity spectra retrieved from AIRS hyperspectral sensor,” J. Appl. Meteorol. Climatol.47(6), 1619–1633 (2008).
[CrossRef]

F. Aires, W. B. Rossow, N. A. Scott, and A. Chedin, “Remote sensing from the infrared atmospheric sounding interferometer instrument. 1. compression, denoising, and first-guess retrieval algorithms,” J. Geophys. Res.107(D22), 4619 (2002).
[CrossRef]

Smith, W. L.

D. K. Zhou, A. M. Larar, X. Liu, W. L. Smith, L. L. Strow, P. Yang, P. Schlüssel, and X. Calbet, “Global land surface emissivity retrieved from satellite ultraspectral IR measurements,” IEEE Trans. Geosci. Rem. Sens.49(4), 1277–1290 (2011).
[CrossRef]

Strow, L. L.

D. K. Zhou, A. M. Larar, X. Liu, W. L. Smith, L. L. Strow, P. Yang, P. Schlüssel, and X. Calbet, “Global land surface emissivity retrieved from satellite ultraspectral IR measurements,” IEEE Trans. Geosci. Rem. Sens.49(4), 1277–1290 (2011).
[CrossRef]

Sun, F.

L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Rem. Sens.46(2), 328–333 (2008).
[CrossRef]

Sun, H.

L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Rem. Sens.46(2), 328–333 (2008).
[CrossRef]

Tang, B.-H.

Valor, E.

J. M. Galve, C. Coll, V. Caselles, and E. Valor, “An atmospheric radiosounding database for generating land surface temperature algorithms,” IEEE Trans. Geosci. Rem. Sens.46(5), 1547–1557 (2008).
[CrossRef]

Weisz, E.

J. Li, E. Weisz, and D. K. Zhou, “Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances,” Geophys. Res. Lett.34(16), L16812 (2007).
[CrossRef]

Wolf, W.

L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Rem. Sens.46(2), 328–333 (2008).
[CrossRef]

Wu, H.

Yang, P.

D. K. Zhou, A. M. Larar, X. Liu, W. L. Smith, L. L. Strow, P. Yang, P. Schlüssel, and X. Calbet, “Global land surface emissivity retrieved from satellite ultraspectral IR measurements,” IEEE Trans. Geosci. Rem. Sens.49(4), 1277–1290 (2011).
[CrossRef]

Zhou, D. K.

D. K. Zhou, A. M. Larar, X. Liu, W. L. Smith, L. L. Strow, P. Yang, P. Schlüssel, and X. Calbet, “Global land surface emissivity retrieved from satellite ultraspectral IR measurements,” IEEE Trans. Geosci. Rem. Sens.49(4), 1277–1290 (2011).
[CrossRef]

J. Li, E. Weisz, and D. K. Zhou, “Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances,” Geophys. Res. Lett.34(16), L16812 (2007).
[CrossRef]

Zhou, L.

L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Rem. Sens.46(2), 328–333 (2008).
[CrossRef]

Geophys. Res. Lett. (3)

J. Li, E. Weisz, and D. K. Zhou, “Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances,” Geophys. Res. Lett.34(16), L16812 (2007).
[CrossRef]

K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing - a case study in a part of Sahara Desert,” Geophys. Res. Lett.30(2), 1067 (2003).
[CrossRef]

J. Li and J. L. Li, “Derivation of global hyperspectral resolution surface emissivity spectra from advanced infrared sounder radiance measurements,” Geophys. Res. Lett.35(15), L15807 (2008).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens. (4)

L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Rem. Sens.46(2), 328–333 (2008).
[CrossRef]

D. K. Zhou, A. M. Larar, X. Liu, W. L. Smith, L. L. Strow, P. Yang, P. Schlüssel, and X. Calbet, “Global land surface emissivity retrieved from satellite ultraspectral IR measurements,” IEEE Trans. Geosci. Rem. Sens.49(4), 1277–1290 (2011).
[CrossRef]

J. M. Galve, C. Coll, V. Caselles, and E. Valor, “An atmospheric radiosounding database for generating land surface temperature algorithms,” IEEE Trans. Geosci. Rem. Sens.46(5), 1547–1557 (2008).
[CrossRef]

A. R. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens.36(4), 1113–1126 (1998).
[CrossRef]

J. Appl. Meteorol. Climatol. (1)

E. Péquignot, A. Chédin, and N. A. Scott, “Infrared continental surface emissivity spectra retrieved from AIRS hyperspectral sensor,” J. Appl. Meteorol. Climatol.47(6), 1619–1633 (2008).
[CrossRef]

J. Geophys. Res. (1)

F. Aires, W. B. Rossow, N. A. Scott, and A. Chedin, “Remote sensing from the infrared atmospheric sounding interferometer instrument. 1. compression, denoising, and first-guess retrieval algorithms,” J. Geophys. Res.107(D22), 4619 (2002).
[CrossRef]

Opt. Express (1)

Other (3)

Z. Wan, “MODIS land-surface temperature algorithm theoretical basis document, version 3.3” (NASA/GSFC, 1999). http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf .

A. R. Gillespie, S. Rokugawa, S. J. Hook, T. Matsunaga, and A. B. Kahle, “Temperature/emissivity separation algorithm theoretical basis document, Version 2.4” (NASA/GSFC, 1996). http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/ASTER/atbd-ast-05-08.pdf .

L. Chaumat, C. Standfuss, B. Tournier, R. Armante, and N. A. Scott, “4A/OP reference documentation” (NOVELTIS, 2012). http://4aop.noveltis.com/sites/4aop.noveltis.loc/files/NOV-3049-NT-1178v4.3.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Characterization of variability and distribution in selected emissivity spectra and atmospheric profiles. The character ‘T’ denotes the training data set and ‘E’ the evaluating data set. (a) the surface emissivity spectra: mean emissivity (solid), mean emissivity ± 1 standard deviation (dashed); (b) the bottom atmospheric temperature, and (c) the TPW of profiles.

Fig. 2
Fig. 2

Comparison between the selected and retrieved emissivity at each wavenumber for spectral region (8-14μm) at VZA 0°. The color solid is the mean spectral bias and the color dashed is the RMSE. (a) statistics for training data set, and (b) statistics for evaluating data set.

Fig. 3
Fig. 3

The overall histogram of emissivity spectra difference between the retrieved and selected emissivity.

Tables (1)

Tables Icon

Table 1 Statistical mean bias, RMSE, and RMSEall for both training and evaluating data sets.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R(v,θ)=ε(v,θ)B(v, T s )τ(v,θ, p s ) 0 p s B(v, T p ) τ(v,θ,p) p dp + (1ε(v,θ)) 0 p s B(v, T p ) τ * (v,θ,p) p dp ,
R(v,θ)=[B(v, T s )τ(v,θ, p s ) 0 p s B(v, T p ) τ * (v,θ, θ s ,p) p dp ]ε(v,θ) [ 0 p s B(v, T p ) τ(v,θ,p) p dp 0 p s B(v, T p ) τ * (v,θ,p) p dp ] =Mε(v,θ)+N ,
δε= ( M T M) 1 M T δ T B =Kδ T B ,
δ T B = i=1 N BT f i BT q i BT = Q BT f BT δε= i=1 N ε f i ε q i ε = Q ε f ε ,
δε= Q ε f ε =Kδ T B =K Q BT f BT .
K= Q ε f ε ( Q BT f BT ) T ( Q BT f BT ( Q BT f BT ) T +rI) 1 ,
bias= 1 N s j=1 N s ( ε v [j]ε ' v [j]) ,
RMSE= 1 N s j=1 N s ( ε v [j]ε ' v [j]) 2 .
RMS E all = 1 N D N S 1 v=1 N D j=1 N S ( ε v [j]ε ' v [j]) 2 ,

Metrics