Abstract

Novel hybrid-polarized vector beams with radial and azimuthal polarization states in arbitrary fan-sectors are generated and studied for manipulating surface plasmon polaritons (SPPs). The method has high energy conversion efficiency based on an interferometric arrangement with a Dammann vortex phase grating. The polarization states of generated beams are measured by a linear polarizer and show excellent agreement with theoretical predictions. The manipulation properties of the hybrid-polarized beams on SPPs excitation and distribution are demonstrated by both experiments and simulations. The results show that focusing or standing wave patterns of SPPs can be obtained depending on the polarization of the beams.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009).
    [CrossRef]
  2. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
    [CrossRef] [PubMed]
  3. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
    [CrossRef] [PubMed]
  4. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
    [CrossRef]
  5. B. H. Jia, X. S. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express13(18), 6821–6827 (2005).
    [CrossRef] [PubMed]
  6. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B15(4), 1381–1386 (1998).
    [CrossRef]
  7. K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams,” Opt. Express16(25), 20734–20741 (2008).
    [CrossRef] [PubMed]
  8. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
    [CrossRef]
  9. K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy,” Opt. Lett.34(7), 971–973 (2009).
    [CrossRef] [PubMed]
  10. X. L. Wang, J. P. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett.32(24), 3549–3551 (2007).
    [CrossRef] [PubMed]
  11. X. M. Gao, J. Wang, H. T. Gu, and W. D. Xu, “Focusing properties of concentric piecewise cylindrical vector beam,” Optik (Stuttg.)118(6), 257–265 (2007).
    [CrossRef]
  12. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Commun.281(4), 732–738 (2008).
    [CrossRef]
  13. U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett.29(15), 1718–1720 (2004).
    [CrossRef] [PubMed]
  14. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21(23), 1948–1950 (1996).
    [CrossRef] [PubMed]
  15. K. J. Moh, X.-C. Yuan, J. Bu, R. E. Burge, and B. Z. Gao, “Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams,” Appl. Opt.46(30), 7544–7551 (2007).
    [CrossRef] [PubMed]
  16. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  18. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
    [CrossRef] [PubMed]
  19. A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett.91(8), 083115 (2007).
    [CrossRef]
  20. C. H. Zhou and L. R. Liu, “Numerical study of Dammann array illuminators,” Appl. Opt.34(26), 5961–5969 (1995).
    [CrossRef] [PubMed]
  21. I. Moreno, J. A. Davis, D. M. Cottrell, N. Zhang, and X.-C. Yuan, “Encoding generalized phase functions on Dammann gratings,” Opt. Lett.35(10), 1536–1538 (2010).
    [CrossRef] [PubMed]
  22. R. Wang, C. L. Zhang, Y. Yang, S. Z. Zhu, and X.-C. Yuan, “Focused cylindrical vector beam assisted microscopic pSPR biosensor with an ultra wide dynamic range,” Opt. Lett.37(11), 2091–2093 (2012).
    [CrossRef] [PubMed]

2012

2010

2009

2008

K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams,” Opt. Express16(25), 20734–20741 (2008).
[CrossRef] [PubMed]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Commun.281(4), 732–738 (2008).
[CrossRef]

2007

X. M. Gao, J. Wang, H. T. Gu, and W. D. Xu, “Focusing properties of concentric piecewise cylindrical vector beam,” Optik (Stuttg.)118(6), 257–265 (2007).
[CrossRef]

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett.91(8), 083115 (2007).
[CrossRef]

K. J. Moh, X.-C. Yuan, J. Bu, R. E. Burge, and B. Z. Gao, “Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams,” Appl. Opt.46(30), 7544–7551 (2007).
[CrossRef] [PubMed]

X. L. Wang, J. P. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett.32(24), 3549–3551 (2007).
[CrossRef] [PubMed]

2006

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

2005

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

B. H. Jia, X. S. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express13(18), 6821–6827 (2005).
[CrossRef] [PubMed]

2004

U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett.29(15), 1718–1720 (2004).
[CrossRef] [PubMed]

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

2003

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2001

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

1998

1996

1995

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

Brongersma, M. L.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

Brown, D. E.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Bu, J.

Burge, R. E.

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

Cottrell, D. M.

Davis, J. A.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ding, J. P.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fainman, Y.

Gan, X. S.

Gao, B. Z.

Gao, X. M.

X. M. Gao, J. Wang, H. T. Gu, and W. D. Xu, “Focusing properties of concentric piecewise cylindrical vector beam,” Optik (Stuttg.)118(6), 257–265 (2007).
[CrossRef]

Gu, H. T.

X. M. Gao, J. Wang, H. T. Gu, and W. D. Xu, “Focusing properties of concentric piecewise cylindrical vector beam,” Optik (Stuttg.)118(6), 257–265 (2007).
[CrossRef]

Gu, M.

Guo, C. S.

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

Hayazawa, N.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

Hiller, J. M.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett.91(8), 083115 (2007).
[CrossRef]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Hua, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Imre, A.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett.91(8), 083115 (2007).
[CrossRef]

Jackel, S.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Commun.281(4), 732–738 (2008).
[CrossRef]

Jia, B. H.

Kano, H.

Kawata, S.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B15(4), 1381–1386 (1998).
[CrossRef]

Kimball, C. W.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Levy, U.

Liu, L. R.

Lumer, Y.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Commun.281(4), 732–738 (2008).
[CrossRef]

Machavariani, G.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Commun.281(4), 732–738 (2008).
[CrossRef]

Meir, A.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Commun.281(4), 732–738 (2008).
[CrossRef]

Mizuguchi, S.

Moh, K. J.

Moreno, I.

Moshe, I.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Commun.281(4), 732–738 (2008).
[CrossRef]

Ni, W. J.

Novotny, L.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pang, L.

Pearson, J.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett.91(8), 083115 (2007).
[CrossRef]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Saito, Y.

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

Schadt, M.

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

Stalder, M.

Tsai, C. H.

Vlasko-Vlasov, V. K.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett.91(8), 083115 (2007).
[CrossRef]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Wang, H. T.

Wang, J.

X. M. Gao, J. Wang, H. T. Gu, and W. D. Xu, “Focusing properties of concentric piecewise cylindrical vector beam,” Optik (Stuttg.)118(6), 257–265 (2007).
[CrossRef]

Wang, R.

Wang, X. L.

Welp, U.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett.91(8), 083115 (2007).
[CrossRef]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Xu, W. D.

X. M. Gao, J. Wang, H. T. Gu, and W. D. Xu, “Focusing properties of concentric piecewise cylindrical vector beam,” Optik (Stuttg.)118(6), 257–265 (2007).
[CrossRef]

Yang, Y.

Yin, L. L.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Yuan, X.-C.

Zhan, Q. W.

Zhang, C. L.

Zhang, N.

Zhou, C. H.

Zhu, S. W.

Zhu, S. Z.

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

Adv. Opt. Photon.

Appl. Opt.

Appl. Phys. Lett.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett.91(8), 083115 (2007).
[CrossRef]

N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Mater. Today

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

Nano Lett.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Commun.281(4), 732–738 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Optik (Stuttg.)

X. M. Gao, J. Wang, H. T. Gu, and W. D. Xu, “Focusing properties of concentric piecewise cylindrical vector beam,” Optik (Stuttg.)118(6), 257–265 (2007).
[CrossRef]

Phys. Rev. Lett.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. G1, Dammann vortex phase grating; P, phase plate; L1, lens; Q1, quarter wave-plate; Q2, quarter wave-plate; F, Fourier plane; L2, lens; G2, Dammann phase grating. The gap between the objective lens and the glass substrate is filled with index matching oil.

Fig. 2
Fig. 2

Theoretical and experimental results of the far-field intensity distribution without and with linear polarizer for four kinds of hybrid vector beams.

Fig. 3
Fig. 3

Experimental results of intensity distributions at the back focal plane of the objective lens for (a) RP beam, (b) AP beam, (c) hybrid-polarized beam with n = 2 (left sector is RP, right sector is AP), and(d) hybrid-polarized beam with n = 4 (the 1st and 3rd quadrants are RP, the 2nd and 4th quadrants are AP) illumination.

Fig. 4
Fig. 4

FDTD simulated results of normalized SPPs intensity distributions for hybrid-polarized beam with radial polarization (a) only in a quadrant sector, (b) in left semi-circle, (c) in 1st and 3rd quadrants, (d) in 4 sectors of 0~45°, 90~135°, 180~225°, 270~315°. (e)-(h) are the corresponding numerically simulated results using vectorial diffraction theory. All inserts indicate the polarization distribution of the hybrid-polarized beams.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E CVB =( cos(φ+ϕ) sin(φ+ϕ) )= 1 2 e i(φ+ϕ) ( 1 i )+ 1 2 e i(φ+ϕ) ( 1 i )= 1 2 e iφ e iϕ ( 1 i )+ 1 2 e iφ e i(2πϕ) ( 1 i )

Metrics