Abstract

The origins and first demonstration of structurally stable solids formed by use of radiation forces are presented. By experimentally proving that radiation forces can indeed produce stable solid material forms, a novel method enabling two- and three-dimensional (2d and 3d) microfabrication is introduced: An optical, non-contact single-step physical operation, reversible with respect to materials nature, based on the sole use of radiation forces. The present innovation is elucidated by the formation of polyisoprene and polybutadiene micro-solids, as well as plasmonic and fluorescent hybrids, respectively comprising Au nanoparticles and CdS quantum dots, together with novel concepts of polymeric fiber-drawing by radiation forces.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Maxwell, A treatise on electricity and magnetism (Oxford Clarendon Press, 1873).
  2. E. F. Nichols and G. F. Hull, “The pressure due to radiation,” Phys. Rev.17(1), 26–50 (1903).
    [CrossRef]
  3. A. Ashkin, “Acceleration and trapping of particles by radiation forces,” Phys. Rev. Lett.24(4), 156–159 (1970).
    [CrossRef]
  4. H. Friedmann and A. Wilson, “Isotope separation by radiation pressure of coherent pi-pulses,” Appl. Phys. Lett.28(5), 270–272 (1976).
    [CrossRef]
  5. V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, “Cooling and trapping atoms and molecules by a resonant laser field,” Opt. Commun.19(1), 72–75 (1976).
    [CrossRef]
  6. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
    [CrossRef] [PubMed]
  7. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124(5-6), 529–541 (1996).
    [CrossRef]
  8. T. A. Nieminen, G. Knöner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Physics of optical tweezers,” Methods Cell Biol.82, 207–236 (2007).
    [CrossRef] [PubMed]
  9. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  10. A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis29(24), 4813–4851 (2008).
    [CrossRef] [PubMed]
  11. D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt.15(4), 041503 (2010).
    [CrossRef] [PubMed]
  12. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
    [CrossRef]
  13. K. Dholakia and W. M. Lee, “Optical trapping takes shape: the use of structured light fields,” Adv. At. Mol. Opt. Phys.56, 261–337 (2008).
    [CrossRef]
  14. K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Phys.82(2), 1767–1791 (2010).
    [CrossRef]
  15. T. Cizmar, L. C. Davila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys.43(10), 102001 (2010).
    [CrossRef]
  16. R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
    [CrossRef] [PubMed]
  17. B. Loppinet, E. Somma, N. Vainos, and G. Fytas, “reversible holographic grating formation in polymer solutions,” J. Am. Chem. Soc.127(27), 9678–9679 (2005).
    [CrossRef] [PubMed]
  18. M. Anyfantakis, B. Loppinet, G. Fytas, and S. Pispas, “Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions,” Opt. Lett.33(23), 2839–2841 (2008).
    [CrossRef] [PubMed]
  19. M. Anyfantakis, G. Fytas, C. Mantzaridis, S. Pispas, H. J. Butt, and B. Loppinet, “Experimental investigation of long time irradiation in polydienes solutions: reversibility and instabilities,” J. Opt.12(12), 124013 (2010).
    [CrossRef]
  20. M. Doi and S. F. Edwards, The theory of polymer dynamics (Oxford Univ. Press, 1986).
  21. P. G. De Gennes, Introduction to polymer dynamics (Cambridge Univ. Press, 1990).
  22. E. Raspaud, D. Lairez, and M. Adam, “On the number of blobs per entanglement in semidilute and good solvent solution: melt influence,” Macromolecules28(4), 927–933 (1995).
    [CrossRef]
  23. L. J. Fetters, N. Hadjichristidis, J. S. Lindner, and J. W. Mays, “Molecular weight dependence of hydrodynamic and thermodynamic properties for well-defined linear polymers in solution,” J. Phys. Chem. Ref. Data23(4), 619–640 (1994).
    [CrossRef]
  24. H. Watanabe, “Viscoelasticity and dynamics of entangled polymers,” Prog. Polym. Sci.24(9), 1253–1403 (1999).
    [CrossRef]
  25. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999).
    [CrossRef]
  26. V. N. Pokrovskii, The mesoscopic theory of polymer dynamics (Springer, 2010).
  27. N. Hadjichrisitidis, H. Iatrou, S. Pispas, and M. Pitsikalis, “Anionic polymerization: high vacuum techniques,” J. Polym. Sci.38, 3211–3234 (2000).
  28. D. Uhrig and J. W. J. Mays, “Experimental techniques in high-vacuum anionic polymerization,” Polym. Sci. 43, 6179–6222 (2005).

2010 (5)

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt.15(4), 041503 (2010).
[CrossRef] [PubMed]

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
[CrossRef]

K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Phys.82(2), 1767–1791 (2010).
[CrossRef]

T. Cizmar, L. C. Davila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys.43(10), 102001 (2010).
[CrossRef]

M. Anyfantakis, G. Fytas, C. Mantzaridis, S. Pispas, H. J. Butt, and B. Loppinet, “Experimental investigation of long time irradiation in polydienes solutions: reversibility and instabilities,” J. Opt.12(12), 124013 (2010).
[CrossRef]

2008 (3)

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

K. Dholakia and W. M. Lee, “Optical trapping takes shape: the use of structured light fields,” Adv. At. Mol. Opt. Phys.56, 261–337 (2008).
[CrossRef]

M. Anyfantakis, B. Loppinet, G. Fytas, and S. Pispas, “Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions,” Opt. Lett.33(23), 2839–2841 (2008).
[CrossRef] [PubMed]

2007 (1)

T. A. Nieminen, G. Knöner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Physics of optical tweezers,” Methods Cell Biol.82, 207–236 (2007).
[CrossRef] [PubMed]

2005 (2)

B. Loppinet, E. Somma, N. Vainos, and G. Fytas, “reversible holographic grating formation in polymer solutions,” J. Am. Chem. Soc.127(27), 9678–9679 (2005).
[CrossRef] [PubMed]

D. Uhrig and J. W. J. Mays, “Experimental techniques in high-vacuum anionic polymerization,” Polym. Sci. 43, 6179–6222 (2005).

2004 (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

2002 (1)

R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
[CrossRef] [PubMed]

2000 (1)

N. Hadjichrisitidis, H. Iatrou, S. Pispas, and M. Pitsikalis, “Anionic polymerization: high vacuum techniques,” J. Polym. Sci.38, 3211–3234 (2000).

1999 (2)

H. Watanabe, “Viscoelasticity and dynamics of entangled polymers,” Prog. Polym. Sci.24(9), 1253–1403 (1999).
[CrossRef]

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999).
[CrossRef]

1996 (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124(5-6), 529–541 (1996).
[CrossRef]

1995 (1)

E. Raspaud, D. Lairez, and M. Adam, “On the number of blobs per entanglement in semidilute and good solvent solution: melt influence,” Macromolecules28(4), 927–933 (1995).
[CrossRef]

1994 (1)

L. J. Fetters, N. Hadjichristidis, J. S. Lindner, and J. W. Mays, “Molecular weight dependence of hydrodynamic and thermodynamic properties for well-defined linear polymers in solution,” J. Phys. Chem. Ref. Data23(4), 619–640 (1994).
[CrossRef]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

1976 (2)

H. Friedmann and A. Wilson, “Isotope separation by radiation pressure of coherent pi-pulses,” Appl. Phys. Lett.28(5), 270–272 (1976).
[CrossRef]

V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, “Cooling and trapping atoms and molecules by a resonant laser field,” Opt. Commun.19(1), 72–75 (1976).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation forces,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

1903 (1)

E. F. Nichols and G. F. Hull, “The pressure due to radiation,” Phys. Rev.17(1), 26–50 (1903).
[CrossRef]

Adam, M.

E. Raspaud, D. Lairez, and M. Adam, “On the number of blobs per entanglement in semidilute and good solvent solution: melt influence,” Macromolecules28(4), 927–933 (1995).
[CrossRef]

Andrews, D. L.

T. Cizmar, L. C. Davila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys.43(10), 102001 (2010).
[CrossRef]

Anyfantakis, M.

M. Anyfantakis, G. Fytas, C. Mantzaridis, S. Pispas, H. J. Butt, and B. Loppinet, “Experimental investigation of long time irradiation in polydienes solutions: reversibility and instabilities,” J. Opt.12(12), 124013 (2010).
[CrossRef]

M. Anyfantakis, B. Loppinet, G. Fytas, and S. Pispas, “Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions,” Opt. Lett.33(23), 2839–2841 (2008).
[CrossRef] [PubMed]

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124(5-6), 529–541 (1996).
[CrossRef]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation forces,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Butt, H. J.

M. Anyfantakis, G. Fytas, C. Mantzaridis, S. Pispas, H. J. Butt, and B. Loppinet, “Experimental investigation of long time irradiation in polydienes solutions: reversibility and instabilities,” J. Opt.12(12), 124013 (2010).
[CrossRef]

Cizmar, T.

T. Cizmar, L. C. Davila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys.43(10), 102001 (2010).
[CrossRef]

Davila Romero, L. C.

T. Cizmar, L. C. Davila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys.43(10), 102001 (2010).
[CrossRef]

Dholakia, K.

T. Cizmar, L. C. Davila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys.43(10), 102001 (2010).
[CrossRef]

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt.15(4), 041503 (2010).
[CrossRef] [PubMed]

K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Phys.82(2), 1767–1791 (2010).
[CrossRef]

K. Dholakia and W. M. Lee, “Optical trapping takes shape: the use of structured light fields,” Adv. At. Mol. Opt. Phys.56, 261–337 (2008).
[CrossRef]

Fetters, L. J.

L. J. Fetters, N. Hadjichristidis, J. S. Lindner, and J. W. Mays, “Molecular weight dependence of hydrodynamic and thermodynamic properties for well-defined linear polymers in solution,” J. Phys. Chem. Ref. Data23(4), 619–640 (1994).
[CrossRef]

Friedmann, H.

H. Friedmann and A. Wilson, “Isotope separation by radiation pressure of coherent pi-pulses,” Appl. Phys. Lett.28(5), 270–272 (1976).
[CrossRef]

Fytas, G.

M. Anyfantakis, G. Fytas, C. Mantzaridis, S. Pispas, H. J. Butt, and B. Loppinet, “Experimental investigation of long time irradiation in polydienes solutions: reversibility and instabilities,” J. Opt.12(12), 124013 (2010).
[CrossRef]

M. Anyfantakis, B. Loppinet, G. Fytas, and S. Pispas, “Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions,” Opt. Lett.33(23), 2839–2841 (2008).
[CrossRef] [PubMed]

B. Loppinet, E. Somma, N. Vainos, and G. Fytas, “reversible holographic grating formation in polymer solutions,” J. Am. Chem. Soc.127(27), 9678–9679 (2005).
[CrossRef] [PubMed]

R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
[CrossRef] [PubMed]

Gunn-Moore, F.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt.15(4), 041503 (2010).
[CrossRef] [PubMed]

Hadjichrisitidis, N.

N. Hadjichrisitidis, H. Iatrou, S. Pispas, and M. Pitsikalis, “Anionic polymerization: high vacuum techniques,” J. Polym. Sci.38, 3211–3234 (2000).

Hadjichristidis, N.

R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
[CrossRef] [PubMed]

L. J. Fetters, N. Hadjichristidis, J. S. Lindner, and J. W. Mays, “Molecular weight dependence of hydrodynamic and thermodynamic properties for well-defined linear polymers in solution,” J. Phys. Chem. Ref. Data23(4), 619–640 (1994).
[CrossRef]

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124(5-6), 529–541 (1996).
[CrossRef]

Heckenberg, N. R.

T. A. Nieminen, G. Knöner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Physics of optical tweezers,” Methods Cell Biol.82, 207–236 (2007).
[CrossRef] [PubMed]

Hull, G. F.

E. F. Nichols and G. F. Hull, “The pressure due to radiation,” Phys. Rev.17(1), 26–50 (1903).
[CrossRef]

Iatrou, H.

N. Hadjichrisitidis, H. Iatrou, S. Pispas, and M. Pitsikalis, “Anionic polymerization: high vacuum techniques,” J. Polym. Sci.38, 3211–3234 (2000).

Jonás, A.

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

Kawata, S.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999).
[CrossRef]

Knöner, G.

T. A. Nieminen, G. Knöner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Physics of optical tweezers,” Methods Cell Biol.82, 207–236 (2007).
[CrossRef] [PubMed]

Lairez, D.

E. Raspaud, D. Lairez, and M. Adam, “On the number of blobs per entanglement in semidilute and good solvent solution: melt influence,” Macromolecules28(4), 927–933 (1995).
[CrossRef]

Lee, W. M.

K. Dholakia and W. M. Lee, “Optical trapping takes shape: the use of structured light fields,” Adv. At. Mol. Opt. Phys.56, 261–337 (2008).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, “Cooling and trapping atoms and molecules by a resonant laser field,” Opt. Commun.19(1), 72–75 (1976).
[CrossRef]

Lindner, J. S.

L. J. Fetters, N. Hadjichristidis, J. S. Lindner, and J. W. Mays, “Molecular weight dependence of hydrodynamic and thermodynamic properties for well-defined linear polymers in solution,” J. Phys. Chem. Ref. Data23(4), 619–640 (1994).
[CrossRef]

Loppinet, B.

M. Anyfantakis, G. Fytas, C. Mantzaridis, S. Pispas, H. J. Butt, and B. Loppinet, “Experimental investigation of long time irradiation in polydienes solutions: reversibility and instabilities,” J. Opt.12(12), 124013 (2010).
[CrossRef]

M. Anyfantakis, B. Loppinet, G. Fytas, and S. Pispas, “Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions,” Opt. Lett.33(23), 2839–2841 (2008).
[CrossRef] [PubMed]

B. Loppinet, E. Somma, N. Vainos, and G. Fytas, “reversible holographic grating formation in polymer solutions,” J. Am. Chem. Soc.127(27), 9678–9679 (2005).
[CrossRef] [PubMed]

Mantzaridis, C.

M. Anyfantakis, G. Fytas, C. Mantzaridis, S. Pispas, H. J. Butt, and B. Loppinet, “Experimental investigation of long time irradiation in polydienes solutions: reversibility and instabilities,” J. Opt.12(12), 124013 (2010).
[CrossRef]

Mays, J. W.

L. J. Fetters, N. Hadjichristidis, J. S. Lindner, and J. W. Mays, “Molecular weight dependence of hydrodynamic and thermodynamic properties for well-defined linear polymers in solution,” J. Phys. Chem. Ref. Data23(4), 619–640 (1994).
[CrossRef]

Mays, J. W. J.

D. Uhrig and J. W. J. Mays, “Experimental techniques in high-vacuum anionic polymerization,” Polym. Sci. 43, 6179–6222 (2005).

Minogin, V. G.

V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, “Cooling and trapping atoms and molecules by a resonant laser field,” Opt. Commun.19(1), 72–75 (1976).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Nichols, E. F.

E. F. Nichols and G. F. Hull, “The pressure due to radiation,” Phys. Rev.17(1), 26–50 (1903).
[CrossRef]

Nieminen, T. A.

T. A. Nieminen, G. Knöner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Physics of optical tweezers,” Methods Cell Biol.82, 207–236 (2007).
[CrossRef] [PubMed]

Okamoto, K.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999).
[CrossRef]

Pavlik, B. D.

V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, “Cooling and trapping atoms and molecules by a resonant laser field,” Opt. Commun.19(1), 72–75 (1976).
[CrossRef]

Pispas, S.

M. Anyfantakis, G. Fytas, C. Mantzaridis, S. Pispas, H. J. Butt, and B. Loppinet, “Experimental investigation of long time irradiation in polydienes solutions: reversibility and instabilities,” J. Opt.12(12), 124013 (2010).
[CrossRef]

M. Anyfantakis, B. Loppinet, G. Fytas, and S. Pispas, “Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions,” Opt. Lett.33(23), 2839–2841 (2008).
[CrossRef] [PubMed]

R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
[CrossRef] [PubMed]

N. Hadjichrisitidis, H. Iatrou, S. Pispas, and M. Pitsikalis, “Anionic polymerization: high vacuum techniques,” J. Polym. Sci.38, 3211–3234 (2000).

Pitsikalis, M.

N. Hadjichrisitidis, H. Iatrou, S. Pispas, and M. Pitsikalis, “Anionic polymerization: high vacuum techniques,” J. Polym. Sci.38, 3211–3234 (2000).

Raspaud, E.

E. Raspaud, D. Lairez, and M. Adam, “On the number of blobs per entanglement in semidilute and good solvent solution: melt influence,” Macromolecules28(4), 927–933 (1995).
[CrossRef]

Roels, J.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
[CrossRef]

Rubinsztein-Dunlop, H.

T. A. Nieminen, G. Knöner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Physics of optical tweezers,” Methods Cell Biol.82, 207–236 (2007).
[CrossRef] [PubMed]

Sigel, R.

R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
[CrossRef] [PubMed]

Somma, E.

B. Loppinet, E. Somma, N. Vainos, and G. Fytas, “reversible holographic grating formation in polymer solutions,” J. Am. Chem. Soc.127(27), 9678–9679 (2005).
[CrossRef] [PubMed]

Stevenson, D. J.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt.15(4), 041503 (2010).
[CrossRef] [PubMed]

Uhrig, D.

D. Uhrig and J. W. J. Mays, “Experimental techniques in high-vacuum anionic polymerization,” Polym. Sci. 43, 6179–6222 (2005).

Vainos, N.

B. Loppinet, E. Somma, N. Vainos, and G. Fytas, “reversible holographic grating formation in polymer solutions,” J. Am. Chem. Soc.127(27), 9678–9679 (2005).
[CrossRef] [PubMed]

R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
[CrossRef] [PubMed]

Van Thourhout, D.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
[CrossRef]

Watanabe, H.

H. Watanabe, “Viscoelasticity and dynamics of entangled polymers,” Prog. Polym. Sci.24(9), 1253–1403 (1999).
[CrossRef]

Wilson, A.

H. Friedmann and A. Wilson, “Isotope separation by radiation pressure of coherent pi-pulses,” Appl. Phys. Lett.28(5), 270–272 (1976).
[CrossRef]

Zemanek, P.

K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Phys.82(2), 1767–1791 (2010).
[CrossRef]

Zemánek, P.

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

Adv. At. Mol. Opt. Phys. (1)

K. Dholakia and W. M. Lee, “Optical trapping takes shape: the use of structured light fields,” Adv. At. Mol. Opt. Phys.56, 261–337 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

H. Friedmann and A. Wilson, “Isotope separation by radiation pressure of coherent pi-pulses,” Appl. Phys. Lett.28(5), 270–272 (1976).
[CrossRef]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992).
[CrossRef] [PubMed]

Electrophoresis (1)

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis29(24), 4813–4851 (2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

B. Loppinet, E. Somma, N. Vainos, and G. Fytas, “reversible holographic grating formation in polymer solutions,” J. Am. Chem. Soc.127(27), 9678–9679 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt.15(4), 041503 (2010).
[CrossRef] [PubMed]

J. Opt. (1)

M. Anyfantakis, G. Fytas, C. Mantzaridis, S. Pispas, H. J. Butt, and B. Loppinet, “Experimental investigation of long time irradiation in polydienes solutions: reversibility and instabilities,” J. Opt.12(12), 124013 (2010).
[CrossRef]

J. Phys. At. Mol. Opt. Phys. (1)

T. Cizmar, L. C. Davila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys.43(10), 102001 (2010).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

L. J. Fetters, N. Hadjichristidis, J. S. Lindner, and J. W. Mays, “Molecular weight dependence of hydrodynamic and thermodynamic properties for well-defined linear polymers in solution,” J. Phys. Chem. Ref. Data23(4), 619–640 (1994).
[CrossRef]

J. Polym. Sci. (1)

N. Hadjichrisitidis, H. Iatrou, S. Pispas, and M. Pitsikalis, “Anionic polymerization: high vacuum techniques,” J. Polym. Sci.38, 3211–3234 (2000).

Macromolecules (1)

E. Raspaud, D. Lairez, and M. Adam, “On the number of blobs per entanglement in semidilute and good solvent solution: melt influence,” Macromolecules28(4), 927–933 (1995).
[CrossRef]

Methods Cell Biol. (1)

T. A. Nieminen, G. Knöner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Physics of optical tweezers,” Methods Cell Biol.82, 207–236 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010).
[CrossRef]

Opt. Commun. (2)

V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, “Cooling and trapping atoms and molecules by a resonant laser field,” Opt. Commun.19(1), 72–75 (1976).
[CrossRef]

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124(5-6), 529–541 (1996).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

E. F. Nichols and G. F. Hull, “The pressure due to radiation,” Phys. Rev.17(1), 26–50 (1903).
[CrossRef]

Phys. Rev. Lett. (2)

A. Ashkin, “Acceleration and trapping of particles by radiation forces,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999).
[CrossRef]

Polym. Sci. (1)

D. Uhrig and J. W. J. Mays, “Experimental techniques in high-vacuum anionic polymerization,” Polym. Sci. 43, 6179–6222 (2005).

Prog. Polym. Sci. (1)

H. Watanabe, “Viscoelasticity and dynamics of entangled polymers,” Prog. Polym. Sci.24(9), 1253–1403 (1999).
[CrossRef]

Rev. Mod. Phys. (1)

K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Phys.82(2), 1767–1791 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Science (1)

R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002).
[CrossRef] [PubMed]

Other (4)

J. C. Maxwell, A treatise on electricity and magnetism (Oxford Clarendon Press, 1873).

V. N. Pokrovskii, The mesoscopic theory of polymer dynamics (Springer, 2010).

M. Doi and S. F. Edwards, The theory of polymer dynamics (Oxford Univ. Press, 1986).

P. G. De Gennes, Introduction to polymer dynamics (Cambridge Univ. Press, 1990).

Supplementary Material (2)

» Media 1: PDF (250 KB)     
» Media 2: AVI (2682 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Gradient force field produced by a propagating Gaussian beam in entangled semidilute polymer solution depicting equipotential contours (isophotes) and solution condensation (b) conceptual view of “blobs” forming entangled “tube” network in solution (c) radiation forces applied on tube segments leading to local resultant forces ΣFi, (d) a weakly focused laser beam creates a series of condensates by tandem partial refocusing of the optical field (Media 1) (e) strongly focusing regime in which a continuous solid structure is produced in the nanoscale by strong forward and backward scattering (simulation results included in supporting information file).

Fig. 2
Fig. 2

(a) Schematic detail of the experimental configuration illustrating the creation of a solid microstructure emerging from films of semidilute polymer deposited on glass. Material is pulled from the vicinity leaving behind a visible recess (b) scanning electron micrograph of created solid polymer structure standing on planar substrate having visible roots at the lower edge of the image (c) end tip of the structure and (d) detail of a fracture and internal structure, (e) experimental plot of the highest production rates as a function of exposure time and energy, (f) image of a fluorescent CdS quantum dots hybrid polymer structure emitting at 470nm and (g) spectra of the CdS composite polymer solution (blue line) and fluorescence of free standing solid structure (red line) slightly shifted due to the nanoparticles’ dielectric environment. Scales are arbitrary and unrelated.

Fig. 3
Fig. 3

(a) Experimental detail of fiber drawing by radiation forces applied in a micro-droplet and twisted flocculent fiber produced as demonstrated in the supporting video (Media 2) (b) plasmonic absorbance of Au nanoparticle hybrid solution (blue line) and absorbance of the hybrid solid produced (red line). Scales are arbitrary and unrelated Inset depicts characteristic pink coloration of the solid. Far (c) and close up (d) high-pressure environmental mode scanning electron micrographs of hybrid fiber (uncoated as produced sample). The relatively large diameter may be attributed to considerably higher availability of polymer mass as compared to the case of the film deposit in Fig. 2.

Metrics