Abstract

Hybrid quantum information protocols are based on local qubits, such as trapped atoms, NV centers, and quantum dots, coupled to photons. The coupling is achieved through optical cavities. Here we demonstrate far-field optimized H1 photonic crystal membrane cavities combined with an additional back reflection mirror below the membrane that meet the optical requirements for implementing hybrid quantum information protocols. Using numerical optimization we find that 80% of the light can be radiated within an objective numerical aperture of 0.8, and the coupling to a single-mode fiber can be as high as 92%. We experimentally prove the unique external mode matching properties by resonant reflection spectroscopy with a cavity mode visibility above 50%.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref] [PubMed]
  2. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
    [Crossref]
  3. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708 (2007).
    [Crossref]
  4. S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
    [Crossref]
  5. M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009).
    [Crossref]
  6. P. K. Pathak and S. Hughes, “Cavity-assisted fast generation of entangled photon pairs through the biexiton-exiton cascade,” Phys. Rev. B 80, 155325 (2009).
    [Crossref]
  7. S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński, N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Appl. Phys. Lett. 99, 101103 (2011).
    [Crossref]
  8. R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
    [Crossref]
  9. A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
    [Crossref] [PubMed]
  10. S. T. Yilmaz, P. Fallahi, and A. Imamoğlu, “Quantum-dot-spin single-photon interface,” Phys. Rev. Lett. 105, 033601 (2010).
    [Crossref] [PubMed]
  11. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
    [Crossref]
  12. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
    [Crossref]
  13. C. Bonato, F. Haupt, S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
    [Crossref] [PubMed]
  14. E. Waks and J. Vučković, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
    [Crossref] [PubMed]
  15. A. Auffèves-Garnier, C. Simon, J.-M. Gérard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
    [Crossref]
  16. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
    [Crossref] [PubMed]
  17. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref] [PubMed]
  18. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
    [Crossref]
  19. N.-V.-Q. Tran, S. Combrié, and A. D. Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
    [Crossref]
  20. N.-V.-Q. Tran, S. Combrié, P. Colman, T. Mei, and A. D. Rossi, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
    [Crossref]
  21. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
    [Crossref] [PubMed]
  22. D. Pinotsi, J. M. Sanchez, P. Fallahi, A. Badalato, and A. Imamoğlu, “Charge controlled self-assembled quantum dots couple to photonic crystal nanocavities,” Photon. Nanostruct.: Fundam. Appl. 10, 256–262 (2012).
    [Crossref]
  23. S. Haddadi, L. Le-Gratiet, I. Sagnes, F. Raineri, A. Basin, K. Bencheikh, J. A. Levenson, and A. M. Yacomotti, “High quality beaming and efficient free-space coupling in L3 photonic crystal active nanocavities,” Opt. Express 20, 18876–18886 (2012).
    [Crossref] [PubMed]
  24. M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
    [Crossref]
  25. K. Hennessy, C. Högerle, E. Hu, A. Badalato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
    [Crossref]
  26. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
    [Crossref]
  27. S.-H. Kim and Y.-H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron. 39, 1081–1085 (2003).
    [Crossref]
  28. Lumerical Solutions, Inc.
  29. J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal micro-cavities,” IEEE J. Quantum Electron. 38, 850–856 (2002).
    [Crossref]
  30. C. Bonato, J. Hagemeier, D. Gerace, S. M. Thon, H. Kim, L. C. Andreani, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Far-field emission profiles from L3 photonic crystal cavity modes,” Photon. Nanostruct.: Fundam. Appl. doi: (2012).
    [Crossref]
  31. M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
    [Crossref] [PubMed]
  32. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
    [Crossref]
  33. M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98, 111117 (2011).
    [Crossref]
  34. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
    [Crossref]

2012 (3)

D. Pinotsi, J. M. Sanchez, P. Fallahi, A. Badalato, and A. Imamoğlu, “Charge controlled self-assembled quantum dots couple to photonic crystal nanocavities,” Photon. Nanostruct.: Fundam. Appl. 10, 256–262 (2012).
[Crossref]

S. Haddadi, L. Le-Gratiet, I. Sagnes, F. Raineri, A. Basin, K. Bencheikh, J. A. Levenson, and A. M. Yacomotti, “High quality beaming and efficient free-space coupling in L3 photonic crystal active nanocavities,” Opt. Express 20, 18876–18886 (2012).
[Crossref] [PubMed]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

2011 (2)

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98, 111117 (2011).
[Crossref]

S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński, N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Appl. Phys. Lett. 99, 101103 (2011).
[Crossref]

2010 (6)

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

S. T. Yilmaz, P. Fallahi, and A. Imamoğlu, “Quantum-dot-spin single-photon interface,” Phys. Rev. Lett. 105, 033601 (2010).
[Crossref] [PubMed]

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
[Crossref]

C. Bonato, F. Haupt, S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

N.-V.-Q. Tran, S. Combrié, P. Colman, T. Mei, and A. D. Rossi, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[Crossref]

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref] [PubMed]

2009 (6)

M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
[Crossref] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

N.-V.-Q. Tran, S. Combrié, and A. D. Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[Crossref]

M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009).
[Crossref]

P. K. Pathak and S. Hughes, “Cavity-assisted fast generation of entangled photon pairs through the biexiton-exiton cascade,” Phys. Rev. B 80, 155325 (2009).
[Crossref]

2008 (1)

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

2007 (5)

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[Crossref]

A. Auffèves-Garnier, C. Simon, J.-M. Gérard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708 (2007).
[Crossref]

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[Crossref]

2006 (3)

K. Hennessy, C. Högerle, E. Hu, A. Badalato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[Crossref]

E. Waks and J. Vučković, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
[Crossref] [PubMed]

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[Crossref]

2005 (1)

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

2003 (4)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

S.-H. Kim and Y.-H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron. 39, 1081–1085 (2003).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
[Crossref]

2002 (1)

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal micro-cavities,” IEEE J. Quantum Electron. 38, 850–856 (2002).
[Crossref]

Ahmadi, E. D.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Andreani, L. C.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

C. Bonato, J. Hagemeier, D. Gerace, S. M. Thon, H. Kim, L. C. Andreani, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Far-field emission profiles from L3 photonic crystal cavity modes,” Photon. Nanostruct.: Fundam. Appl. doi: (2012).
[Crossref]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Auffèves-Garnier, A.

A. Auffèves-Garnier, C. Simon, J.-M. Gérard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[Crossref]

Badalato, A.

D. Pinotsi, J. M. Sanchez, P. Fallahi, A. Badalato, and A. Imamoğlu, “Charge controlled self-assembled quantum dots couple to photonic crystal nanocavities,” Photon. Nanostruct.: Fundam. Appl. 10, 256–262 (2012).
[Crossref]

K. Hennessy, C. Högerle, E. Hu, A. Badalato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[Crossref]

Basin, A.

Belotti, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Bencheikh, K.

Beveratos, A.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009).
[Crossref]

Bloch, J.

S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński, N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Appl. Phys. Lett. 99, 101103 (2011).
[Crossref]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Bonato, C.

C. Bonato, F. Haupt, S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

C. Bonato, J. Hagemeier, D. Gerace, S. M. Thon, H. Kim, L. C. Andreani, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Far-field emission profiles from L3 photonic crystal cavity modes,” Photon. Nanostruct.: Fundam. Appl. doi: (2012).
[Crossref]

Bouwmeester, D.

C. Bonato, F. Haupt, S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
[Crossref] [PubMed]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708 (2007).
[Crossref]

C. Bonato, J. Hagemeier, D. Gerace, S. M. Thon, H. Kim, L. C. Andreani, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Far-field emission profiles from L3 photonic crystal cavity modes,” Photon. Nanostruct.: Fundam. Appl. doi: (2012).
[Crossref]

Calvar, A.

S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński, N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Appl. Phys. Lett. 99, 101103 (2011).
[Crossref]

Coldren, L. A.

M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
[Crossref] [PubMed]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708 (2007).
[Crossref]

Colman, P.

N.-V.-Q. Tran, S. Combrié, P. Colman, T. Mei, and A. D. Rossi, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[Crossref]

Combrié, S.

N.-V.-Q. Tran, S. Combrié, P. Colman, T. Mei, and A. D. Rossi, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[Crossref]

N.-V.-Q. Tran, S. Combrié, and A. D. Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[Crossref]

de Vasconcellos, S. M.

S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński, N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Appl. Phys. Lett. 99, 101103 (2011).
[Crossref]

Deotare, P. B.

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98, 111117 (2011).
[Crossref]

Ding, D.

C. Bonato, F. Haupt, S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

Dousse, A.

S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński, N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Appl. Phys. Lett. 99, 101103 (2011).
[Crossref]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Dupuis, N.

S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński, N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Appl. Phys. Lett. 99, 101103 (2011).
[Crossref]

Englund, D.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

Fallahi, P.

D. Pinotsi, J. M. Sanchez, P. Fallahi, A. Badalato, and A. Imamoğlu, “Charge controlled self-assembled quantum dots couple to photonic crystal nanocavities,” Photon. Nanostruct.: Fundam. Appl. 10, 256–262 (2012).
[Crossref]

S. T. Yilmaz, P. Fallahi, and A. Imamoğlu, “Quantum-dot-spin single-photon interface,” Phys. Rev. Lett. 105, 033601 (2010).
[Crossref] [PubMed]

Fan, S.

Faraon, A.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

Forchel, A.

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
[Crossref]

Fox, A. M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Fushman, I.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

Galli, M.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Gerace, D.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref] [PubMed]

C. Bonato, J. Hagemeier, D. Gerace, S. M. Thon, H. Kim, L. C. Andreani, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Far-field emission profiles from L3 photonic crystal cavity modes,” Photon. Nanostruct.: Fundam. Appl. doi: (2012).
[Crossref]

Gérard, J.-M.

A. Auffèves-Garnier, C. Simon, J.-M. Gérard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[Crossref]

Gudat, J.

C. Bonato, F. Haupt, S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

Haddadi, S.

Hafenbrak, R.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[Crossref]

Hagemeier, J.

C. Bonato, J. Hagemeier, D. Gerace, S. M. Thon, H. Kim, L. C. Andreani, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Far-field emission profiles from L3 photonic crystal cavity modes,” Photon. Nanostruct.: Fundam. Appl. doi: (2012).
[Crossref]

Haupt, F.

C. Bonato, F. Haupt, S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

Hennessy, K.

K. Hennessy, C. Högerle, E. Hu, A. Badalato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[Crossref]

Högerle, C.

K. Hennessy, C. Högerle, E. Hu, A. Badalato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[Crossref]

Hu, C. Y.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Hu, E.

K. Hennessy, C. Högerle, E. Hu, A. Badalato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[Crossref]

Hughes, S.

P. K. Pathak and S. Hughes, “Cavity-assisted fast generation of entangled photon pairs through the biexiton-exiton cascade,” Phys. Rev. B 80, 155325 (2009).
[Crossref]

Hugues, M.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Ikeda, N.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[Crossref]

Imamoglu, A.

D. Pinotsi, J. M. Sanchez, P. Fallahi, A. Badalato, and A. Imamoğlu, “Charge controlled self-assembled quantum dots couple to photonic crystal nanocavities,” Photon. Nanostruct.: Fundam. Appl. 10, 256–262 (2012).
[Crossref]

S. T. Yilmaz, P. Fallahi, and A. Imamoğlu, “Quantum-dot-spin single-photon interface,” Phys. Rev. Lett. 105, 033601 (2010).
[Crossref] [PubMed]

K. Hennessy, C. Högerle, E. Hu, A. Badalato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[Crossref]

Joannopoulos, J. D.

Karle, T.

M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009).
[Crossref]

Kim, H.

C. Bonato, J. Hagemeier, D. Gerace, S. M. Thon, H. Kim, L. C. Andreani, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Far-field emission profiles from L3 photonic crystal cavity modes,” Photon. Nanostruct.: Fundam. Appl. doi: (2012).
[Crossref]

Kim, S.-H.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[Crossref]

S.-H. Kim and Y.-H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron. 39, 1081–1085 (2003).
[Crossref]

Kim, S.-K.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[Crossref]

Kono, S.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[Crossref]

Krauss, T. F.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Krebs, O.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Larqué, M.

M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009).
[Crossref]

Lee, Y.-H.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[Crossref]

S.-H. Kim and Y.-H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron. 39, 1081–1085 (2003).
[Crossref]

Le-Gratiet, L.

Lemaître, A.

S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński, N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Appl. Phys. Lett. 99, 101103 (2011).
[Crossref]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Levenson, J. A.

Loncar, M.

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98, 111117 (2011).
[Crossref]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal micro-cavities,” IEEE J. Quantum Electron. 38, 850–856 (2002).
[Crossref]

Lounis, B.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Luxmoore, B. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Luxmoore, I. J.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Mabuchi, H.

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal micro-cavities,” IEEE J. Quantum Electron. 38, 850–856 (2002).
[Crossref]

McCutcheon, M. W.

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98, 111117 (2011).
[Crossref]

Mei, T.

N.-V.-Q. Tran, S. Combrié, P. Colman, T. Mei, and A. D. Rossi, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[Crossref]

Michler, P.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[Crossref]

Munro, W. J.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

O’Brien, J. L.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

O’Faolain, L.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Oemrawsingh, S.

C. Bonato, F. Haupt, S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

Ohkouchi, S.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[Crossref]

Orrit, M.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Pathak, P. K.

P. K. Pathak and S. Hughes, “Cavity-assisted fast generation of entangled photon pairs through the biexiton-exiton cascade,” Phys. Rev. B 80, 155325 (2009).
[Crossref]

Petroff, P.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

Petroff, P. M.

M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
[Crossref] [PubMed]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708 (2007).
[Crossref]

C. Bonato, J. Hagemeier, D. Gerace, S. M. Thon, H. Kim, L. C. Andreani, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Far-field emission profiles from L3 photonic crystal cavity modes,” Photon. Nanostruct.: Fundam. Appl. doi: (2012).
[Crossref]

Pinotsi, D.

D. Pinotsi, J. M. Sanchez, P. Fallahi, A. Badalato, and A. Imamoğlu, “Charge controlled self-assembled quantum dots couple to photonic crystal nanocavities,” Photon. Nanostruct.: Fundam. Appl. 10, 256–262 (2012).
[Crossref]

Poizat, J.-P.

A. Auffèves-Garnier, C. Simon, J.-M. Gérard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[Crossref]

Portalupi, S. L.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Raineri, F.

Rakher, M. T.

M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
[Crossref] [PubMed]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708 (2007).
[Crossref]

Rarity, J. G.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Rastelli, A.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[Crossref]

Reardon, C.

Reitzenstein, S.

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
[Crossref]

Robert-Philip, I.

M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009).
[Crossref]

Rossi, A. D.

N.-V.-Q. Tran, S. Combrié, P. Colman, T. Mei, and A. D. Rossi, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[Crossref]

N.-V.-Q. Tran, S. Combrié, and A. D. Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[Crossref]

Sagnes, I.

S. Haddadi, L. Le-Gratiet, I. Sagnes, F. Raineri, A. Basin, K. Bencheikh, J. A. Levenson, and A. M. Yacomotti, “High quality beaming and efficient free-space coupling in L3 photonic crystal active nanocavities,” Opt. Express 20, 18876–18886 (2012).
[Crossref] [PubMed]

S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński, N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Appl. Phys. Lett. 99, 101103 (2011).
[Crossref]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Sanchez, J. M.

D. Pinotsi, J. M. Sanchez, P. Fallahi, A. Badalato, and A. Imamoğlu, “Charge controlled self-assembled quantum dots couple to photonic crystal nanocavities,” Photon. Nanostruct.: Fundam. Appl. 10, 256–262 (2012).
[Crossref]

Scherer, A.

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal micro-cavities,” IEEE J. Quantum Electron. 38, 850–856 (2002).
[Crossref]

Schmidt, O. G.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[Crossref]

Senellart, P.

S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński, N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Appl. Phys. Lett. 99, 101103 (2011).
[Crossref]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Shirane, M.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[Crossref]

Simon, C.

A. Auffèves-Garnier, C. Simon, J.-M. Gérard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[Crossref]

Skolnick, M. S.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Stoltz, N.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

Stoltz, N. G.

M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
[Crossref] [PubMed]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708 (2007).
[Crossref]

Strauf, S.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708 (2007).
[Crossref]

Suffczynski, J.

S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński, N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Appl. Phys. Lett. 99, 101103 (2011).
[Crossref]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Sugimoto, Y.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[Crossref]

Suh, W.

Tartakovskii, A. I.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Thon, S. M.

C. Bonato, J. Hagemeier, D. Gerace, S. M. Thon, H. Kim, L. C. Andreani, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Far-field emission profiles from L3 photonic crystal cavity modes,” Photon. Nanostruct.: Fundam. Appl. doi: (2012).
[Crossref]

Tomita, A.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[Crossref]

Tran, N.-V.-Q.

N.-V.-Q. Tran, S. Combrié, P. Colman, T. Mei, and A. D. Rossi, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[Crossref]

N.-V.-Q. Tran, S. Combrié, and A. D. Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[Crossref]

Ulrich, S. M.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[Crossref]

Ushida, J.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

van Exter, M. P.

C. Bonato, F. Haupt, S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

C. Bonato, J. Hagemeier, D. Gerace, S. M. Thon, H. Kim, L. C. Andreani, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Far-field emission profiles from L3 photonic crystal cavity modes,” Photon. Nanostruct.: Fundam. Appl. doi: (2012).
[Crossref]

Voisin, P.

S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński, N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Appl. Phys. Lett. 99, 101103 (2011).
[Crossref]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

Vuckovic, J.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

E. Waks and J. Vučković, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
[Crossref] [PubMed]

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal micro-cavities,” IEEE J. Quantum Electron. 38, 850–856 (2002).
[Crossref]

Waks, E.

E. Waks and J. Vučković, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
[Crossref] [PubMed]

Wang, L.

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[Crossref]

Wasley, N. A.

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

Yacomotti, A. M.

Yilmaz, S. T.

S. T. Yilmaz, P. Fallahi, and A. Imamoğlu, “Quantum-dot-spin single-photon interface,” Phys. Rev. Lett. 105, 033601 (2010).
[Crossref] [PubMed]

Young, A.

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

Zhang, Y.

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98, 111117 (2011).
[Crossref]

Appl. Phys. Lett. (5)

S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński, N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Appl. Phys. Lett. 99, 101103 (2011).
[Crossref]

K. Hennessy, C. Högerle, E. Hu, A. Badalato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[Crossref]

I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Appl. Phys. Lett. 100, 121116 (2012).
[Crossref]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98, 111117 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal micro-cavities,” IEEE J. Quantum Electron. 38, 850–856 (2002).
[Crossref]

S.-H. Kim and Y.-H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron. 39, 1081–1085 (2003).
[Crossref]

J. Appl. Phys. (1)

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” J. Phys. D: Appl. Phys. 43, 033001 (2010).
[Crossref]

Nat. Photon. (1)

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708 (2007).
[Crossref]

Nature (4)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010).
[Crossref] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

New J. Phys. (2)

R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K,” New J. Phys. 9, 315 (2007).
[Crossref]

M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009).
[Crossref]

Opt. Express (2)

Photon. Nanostruct.: Fundam. Appl. (1)

D. Pinotsi, J. M. Sanchez, P. Fallahi, A. Badalato, and A. Imamoğlu, “Charge controlled self-assembled quantum dots couple to photonic crystal nanocavities,” Photon. Nanostruct.: Fundam. Appl. 10, 256–262 (2012).
[Crossref]

Phys. Rev. A (1)

A. Auffèves-Garnier, C. Simon, J.-M. Gérard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007).
[Crossref]

Phys. Rev. B (6)

P. K. Pathak and S. Hughes, “Cavity-assisted fast generation of entangled photon pairs through the biexiton-exiton cascade,” Phys. Rev. B 80, 155325 (2009).
[Crossref]

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[Crossref]

N.-V.-Q. Tran, S. Combrié, and A. D. Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[Crossref]

N.-V.-Q. Tran, S. Combrié, P. Colman, T. Mei, and A. D. Rossi, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009).
[Crossref]

Phys. Rev. Lett. (4)

C. Bonato, F. Haupt, S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010).
[Crossref] [PubMed]

E. Waks and J. Vučković, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96, 153601 (2006).
[Crossref] [PubMed]

S. T. Yilmaz, P. Fallahi, and A. Imamoğlu, “Quantum-dot-spin single-photon interface,” Phys. Rev. Lett. 105, 033601 (2010).
[Crossref] [PubMed]

M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005).
[Crossref]

Other (2)

C. Bonato, J. Hagemeier, D. Gerace, S. M. Thon, H. Kim, L. C. Andreani, P. M. Petroff, M. P. van Exter, and D. Bouwmeester, “Far-field emission profiles from L3 photonic crystal cavity modes,” Photon. Nanostruct.: Fundam. Appl. doi: (2012).
[Crossref]

Lumerical Solutions, Inc.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Sketch of the H1 cavity, indicating the outward shift and reduced size of the six nearest air holes. (b) SEM image of a fabricated H1 cavity PhC device; scale bar: 2 μm. (c) Characteristic photoluminescence measurement of a fabricated device, illustrating the splitting of the H and V modes due to fabrication imperfections. (d) FDTD simulated near-field amplitude components for the H dipole mode (top row) and the V dipole mode (bottom row). Plotted for each mode are Re(Ex) and Re(Ey). Scale bar in all plots: 250 nm. (e) FDTD simulated far-field radiation intensities of Ex and Ey components for the H dipole mode (top row) and the V dipole mode (bottom row). The white concentric circles correspond to NA = 0.2, 0.4, 0.6, 0.8, and 1.0.

Fig. 2
Fig. 2

(a) Simulated Q of the H dipole mode as a function of s/a. Simulations without a bottom reflector are represented by the blue circles (labeled ‘no R’), and simulations with a bottom reflector separated by an air gap of L = 925 nm are represented by the red squares (labeled ‘with R’). (b) Simulated collection efficiency as a function of s/a for NA = 0.5 (in blue), 0.8 (in red), and 0.9 (in green). Simulations with (without) a bottom reflector are represented by squares (circles). For simulations without the bottom reflector, the collection efficiency maximum is 50%; however, with the bottom reflector, the maximum collection efficiency is 100%. The ideal compromise value, s/a = 0.115, is indicated by the cyan ellipse, where the Q is 15,000 and the coupling efficiency for an objective with NA of 0.8 is 80%.

Fig. 3
Fig. 3

Top: FDTD simulated Q (blue solid curve) and fiber mode-matching (green dashed curve) of the H dipole mode as a function of air gap separation L. The best compromise, indicated by the red ellipse, occurs for L = 925 nm. Bottom: Simulated far-field radiation patterns for devices of different L values. Each profile is normalized by its own maximum intensity, with a scale bar shown at the far right. As the air gap separation increases, the mode profiles become more Gaussian, which show better coupling to a single-mode fiber. The white concentric circles correspond to NA = 0.2, 0.4, 0.6, 0.8, and 1.0.

Fig. 4
Fig. 4

A plot of the total radiation intensity (W = |S +1|2) as a function of NA, for different values of L/λ. The calculation is done for the following paramaters: neff = 2.8, λ = 963 nm, d = 130 nm, and ε = π. In the bottom panel, line cuts are taken for L/λ = 0.93 (left, in pink), 0.96 (middle, in green), and 1.06 (right, in cyan). Plotted are a Gaussian (blue curve) and the Gaussian convolved with the function |S + 1|2 (red curve). The experimental air gap of L = 925 nm, for λ = 963 nm, is represented by the middle green curve.

Fig. 5
Fig. 5

Top row: FDTD simulated far-field profiles, considering the membrane only, for different values of s/a. The profiles are cut off at NA = 0.8 to allow for better comparison with experimental results. Middle row: FDTD simulations, including the air gap and DBR, for the same s/a values as above. For increasing shift values, the vertical beaming of the radiation clearly improves. Bottom row: Experimental far-field profiles, for one row of devices, showing a nice comparison with simulation results.

Fig. 6
Fig. 6

Reflection dips for cavities with different outward shift parameters, including s/a = 0.100, 0.115, 0.131, and 0.146. Data points are in blue, and the red curves are Fano line-shapes as predicted by our model, with rDBR = 0.95, and the mode-matching being the only free parameter. Larger dips are seen for cavities that were optimized for Gaussian-like far-field profiles. The measured far-field profiles (both H and V) for each of the cavities are shown below the reflection curves.

Fig. 7
Fig. 7

Model for asymmetric Fano lineshapes, using a temporal coupled-mode theory. (a) Representation of the PhC cavity, with two input/output ports. (b) Schematic of the full structure, including the PhC membrane, the air gap, the DBR mirror, and the substrate.

Fig. 8
Fig. 8

(a) Simulated Q of the H dipole mode as a function of rsm/r, where rsm represents the radius of the six nearest holes, and r represents the radius of the other holes in the PhC lattice. (b) Simulated collection efficiency as a function of rsm/r for NA = 0.5 (in blue), 0.8 (in red), and 0.9 (in green). The ideal compromise value, rsm/r = 0.64, is indicated by the red ellipse, where the Q is 17,000 and the coupling efficiency for an objective with NA of 0.8 is 40%.

Fig. 9
Fig. 9

Top row: FDTD simulated far-field profiles, considering the membrane only, for different values of r sm /r. The profiles are cut off at NA = 0.8 to allow for better comparison with experimental results. For decreasing small hole size, the radiation becomes more concentrated at small angles. Middle row: FDTD simulations, including the bottom reflector, for the same r sm /r values as above. Bottom row: Experimental far-field profiles, for row A of devices, showing a nice comparison with simulation results.

Fig. 10
Fig. 10

Top row: FDTD simulated far-field profiles, considering the membrane only, for different values of r sm /r. The profiles are cut off at NA = 0.8 to allow for better comparison with experimental results. For decreasing small hole size, the radiation becomes more concentrated at small angles. Middle row: FDTD simulations, including the bottom reflector, for the same r sm /r values as above. Bottom row: Experimental far-field profiles, for row B of devices, showing a nice comparison with simulation results.

Fig. 11
Fig. 11

Top row: FDTD simulated far-field profiles of the V dipole mode, considering the membrane only, for different values of s/a. The profiles are cut off at NA = 0.8 to allow for better comparison with experimental results. For increasing shift values, the vertical beaming of the signal improves. Middle row: FDTD simulations, including the bottom reflector, for the same s/a values as above. Bottom row: Experimental far-field profiles, for one row of devices, showing a nice comparison with simulation results.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ψ 2 ( r ) = 1 3 [ R 2 π / 3 ψ 1 ( r ) + R π / 3 ψ 1 ( r ) ]
ϕ = ( 2 π n eff λ ) d 1 ( 1 / n eff ) 2 sin 2 θ ,
φ = ( 2 π λ ) L cos θ .
S = t 0 2 e i ϕ ( 1 r 0 2 e 2 i ϕ ) ( r 0 + e 2 i φ e i ε ) r 0 t 0 2 e 2 i ϕ ,
W = | 1 + S | 2 .
[ E 1 E 2 ] = [ Σ 11 Σ 12 Σ 21 Σ 22 ] [ E 1 E 2 ]
Σ = [ r j t j t r ] ( r + j t ) / τ j ( ω ω 0 ) + 1 / τ [ 1 1 1 1 ]
R ( ω ) = r 2 ( ω ω 0 ) 2 + ( t / τ ) 2 + 2 r t ( ω ω 0 ) / τ ( ω ω 0 ) 2 + ( 1 / τ ) 2
E 2 = r D B R e 2 i ω L / c E 2
E 2 = r D B R e 2 i ω L / c Σ 21 ( ω ) 1 r D B R e 2 i ω L / c Σ 22 ( ω ) E 1
R eff ( ω ) = | Σ 11 ( ω ) + r D B R e 2 i ω L / c Σ 21 ( ω ) Σ 12 ( ω ) 1 r D B R e 2 i ω L / c Σ 22 ( ω ) | 2

Metrics