Abstract

We report the design and experimental realization of a new type of microring filters consisting of two parallel-cascaded microring doublets connected by a π-phase shift element. Interference between the two second-order microring stages gave rise to a fourth-order filter response with flat-top passband and a bandwidth of 100GHz. The result demonstrates the feasibility of realizing advanced integrated optics filters based on parallel cascades of high-order microring networks.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
    [CrossRef]
  2. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express18(25), 26505–26516 (2010).
    [CrossRef] [PubMed]
  3. V. Van, “Synthesis of elliptic optical filters using mutually-coupled microring resonators,” J. Lightwave Technol.25(2), 584–590 (2007).
    [CrossRef]
  4. M. A. Popovic, T. Barwicz, P. T. Rakich, M. S. Dahlem, C. W. Holzwarth, F. Gan, L. Socci, M. R. Watts, H. I. Smith, F. X. Kartner, and E. P. Ippen, “Experimental demonstration of loop-coupled microring resonators for optimally sharp optical filters,” IEEE Conf. on Lasers and Electro-Optics, paper CTuNN3 (2008).
  5. C. K. Madsen, “General IIR optical filter design for WDM applications using all-pass filters,” J. Lightwave Technol.18(6), 860–868 (2000).
    [CrossRef]
  6. H. L. Liew and V. Van, “Exact realization of optical transfer functions with symmetric transmission zeros using the double-microring ladder architecture,” J. Lightwave Technol.26(14), 2323–2331 (2008).
    [CrossRef]
  7. B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett.25(5), 344–346 (2000).
    [CrossRef] [PubMed]
  8. R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol.20(5), 900–905 (2002).
    [CrossRef]
  9. H. G. Martinez and T. W. Parks, “Design of recursive digital filters with optimum magnitude and attenuation poles on the unit circle,” IEEE Trans. Acoust., Speech, Signal Proc.26(2), 150–156 (1978).
    [CrossRef]
  10. A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J. Hu, J. D. Musgraves, K. Richardson, A. Agarwal, L. C. Kimerling, and A. Melloni, “Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass,” Opt. Lett.36(20), 4002–4004 (2011).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

2008 (1)

2007 (1)

2004 (1)

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

2002 (1)

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol.20(5), 900–905 (2002).
[CrossRef]

2000 (2)

1978 (1)

H. G. Martinez and T. W. Parks, “Design of recursive digital filters with optimum magnitude and attenuation poles on the unit circle,” IEEE Trans. Acoust., Speech, Signal Proc.26(2), 150–156 (1978).
[CrossRef]

Absil, P. P.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol.20(5), 900–905 (2002).
[CrossRef]

B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett.25(5), 344–346 (2000).
[CrossRef] [PubMed]

Agarwal, A.

Assefa, S.

Calhoun, L. C.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol.20(5), 900–905 (2002).
[CrossRef]

Canciamilla, A.

Chu, S. T.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett.25(5), 344–346 (2000).
[CrossRef] [PubMed]

Cooper, M. L.

Ferrari, C.

Gill, D.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

Green, W. M.

Grillanda, S.

Grover, R.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol.20(5), 900–905 (2002).
[CrossRef]

Gupta, G.

Ho, P.-T.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol.20(5), 900–905 (2002).
[CrossRef]

Hryniewicz, J. V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol.20(5), 900–905 (2002).
[CrossRef]

B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett.25(5), 344–346 (2000).
[CrossRef] [PubMed]

Hu, J.

Ibrahim, T. A.

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol.20(5), 900–905 (2002).
[CrossRef]

Johnson, F. G.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol.20(5), 900–905 (2002).
[CrossRef]

Kimerling, L. C.

King, O.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

Liew, H. L.

Little, B. E.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett.25(5), 344–346 (2000).
[CrossRef] [PubMed]

Madsen, C. K.

Martinez, H. G.

H. G. Martinez and T. W. Parks, “Design of recursive digital filters with optimum magnitude and attenuation poles on the unit circle,” IEEE Trans. Acoust., Speech, Signal Proc.26(2), 150–156 (1978).
[CrossRef]

Melloni, A.

Mookherjea, S.

Morichetti, F.

Musgraves, J. D.

Parks, T. W.

H. G. Martinez and T. W. Parks, “Design of recursive digital filters with optimum magnitude and attenuation poles on the unit circle,” IEEE Trans. Acoust., Speech, Signal Proc.26(2), 150–156 (1978).
[CrossRef]

Richardson, K.

Schneider, M. A.

Seiferth, F.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

Trakalo, M.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

Van, V.

H. L. Liew and V. Van, “Exact realization of optical transfer functions with symmetric transmission zeros using the double-microring ladder architecture,” J. Lightwave Technol.26(14), 2323–2331 (2008).
[CrossRef]

V. Van, “Synthesis of elliptic optical filters using mutually-coupled microring resonators,” J. Lightwave Technol.25(2), 584–590 (2007).
[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol.20(5), 900–905 (2002).
[CrossRef]

Vlasov, Y. A.

Xia, F.

IEEE Photon. Technol. Lett. (1)

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett.16(10), 2263–2265 (2004).
[CrossRef]

IEEE Trans. Acoust., Speech, Signal Proc. (1)

H. G. Martinez and T. W. Parks, “Design of recursive digital filters with optimum magnitude and attenuation poles on the unit circle,” IEEE Trans. Acoust., Speech, Signal Proc.26(2), 150–156 (1978).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (1)

Opt. Lett. (2)

Other (1)

M. A. Popovic, T. Barwicz, P. T. Rakich, M. S. Dahlem, C. W. Holzwarth, F. Gan, L. Socci, M. R. Watts, H. I. Smith, F. X. Kartner, and E. P. Ippen, “Experimental demonstration of loop-coupled microring resonators for optimally sharp optical filters,” IEEE Conf. on Lasers and Electro-Optics, paper CTuNN3 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of a parallel cascaded array of N single add-drop microring resonators; (b) schematic of a microring ladder filter consisting of a parallel cascaded array of N microring doublets.

Fig. 2
Fig. 2

(a) Layout of a two-stage microring ladder filter. (b) Theoretical (solid lines) and simulated (dashed lines) spectral responses of the device.

Fig. 3
Fig. 3

(a) SEM image of the fabricated SOI microring ladder filter; (b) optical micrograph of the device with overlaid heaters; (c) device mounted on a PCB board.

Fig. 4
Fig. 4

(a) As-fabricated drop port response; (b) response after tuning microring resonances 3 and 4 (red); (c) final tuned filter response; (d) tuned and fitted drop-port responses.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S 11 (k) = S 22 (k) = τ k1 τ k2 (1+ τ k1 2 ) z 1 + τ k1 z 2 12 τ k1 τ k2 z 1 + τ k1 2 z 2 = R k ( z 1 ) Q k ( z 1 ) ,
S 21 (k) = S 12 (k) = j κ k1 2 κ k2 z 1 12 τ k1 τ k2 z 1 + τ k1 2 z 2 = j K k z 1 Q k ( z 1 ) .
S 11 = S 21 (1) S 21 (2) S 11 (1) S 11 (2) = R 1 ( z 1 ) R 2 ( z 1 )+ K 1 K 2 z 2 Q 1 ( z 1 ) Q 2 ( z 1 ) ,
S 21 = S 21 (1) S 11 (2) S 11 (1) S 21 (2) =j z 1 K 1 R 2 ( z 1 ) K 2 R 1 ( z 1 ) Q 1 ( z 1 ) Q 2 ( z 1 ) .
{ p k , p k * }=( τ k2 ±j κ k2 )/ τ k1 .
τ k1 = 1 | p k | 2 , τ k2 = τ k1 Re{ p k }.

Metrics