Abstract

Current atomic clocks are burdened by size, weight, power and portability limitations to satisfy a broad range of potential applications. One critical need in the fabrication of a miniaturized atomic clock is small, low-power metallic sources. Exploiting the relatively high vapor pressure of ytterbium (Yb) and its dissolution in anhydrous ammonia, we report two independent techniques for depositing Yb inside a well micromachined into a microhotplate. Subsequent in situ evaporation of Yb from the microhotplate well serves as a low-power metallic source suitable for atomic clocks. The deposition and evaporation of Yb were confirmed using a variety of physicochemical techniques including quartz crystal microbalance, scanning electron microscopy, energy dispersive X-ray spectroscopy, and laser fluorescence. We also describe the fabrication of the microhotplate device, an integral component of our Yb-based miniature atomic clock. The Yb deposition/evaporation on a microhotplate well is thus useful as a low power Yb source during the fabrication of a miniaturized atomic clock, and this technique could be used for other applications requiring a vapor of a metal that has a moderate vapor pressure.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Knappe, “MEMS atomic clocks,” in Comprehensive Microsystems, Vol. 3 (Elsevier, 2007), 571-612.
  2. T. E. Parker, “Long-term comparison of caesium fountain primary frequency standards,” Metrologia47(1), 1–10 (2010).
    [CrossRef]
  3. N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009).
    [CrossRef] [PubMed]
  4. C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
    [CrossRef] [PubMed]
  5. J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, and S. Bize, “Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7 x 10−15,”Phys. Rev. Lett.108(18), 183004 (2012).
    [CrossRef] [PubMed]
  6. N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+.,” Phys. Rev. Lett.108(9), 090801 (2012).
    [CrossRef] [PubMed]
  7. Ch. Lisdat, J. S. Winfred, T. Middelmann, F. Riehle, and U. Sterr, “Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons,” Phys. Rev. Lett.103(9), 090801 (2009).
    [CrossRef] [PubMed]
  8. M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
    [CrossRef] [PubMed]
  9. X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
    [CrossRef]
  10. M. A. Perez, U. Nguyen, S. Knappe, E. A. Donley, J. Kitching, and A. M. Shkel, “Rubidium vapor cell with integrated Bragg reflectors for compact atomic MEMS,” Sens. Actuators A Phys.154(2), 295–303 (2009).
    [CrossRef]
  11. S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt.8(7), S318–S322 (2006).
    [CrossRef]
  12. R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake, “The MAC – A miniature atomic clock,” in Proceedings of 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, L. Breakiron, ed., 752–757 (2005).
  13. S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett.85(9), 1460–1462 (2004).
    [CrossRef]
  14. A. M. Braun, T. J. Davis, M. H. Kwakernaak, J. J. Michalchuk, A. Ulmer, W. K. Chan, J. H. Abeles, Z. A. Shellenbarger, Y. Y. Jau, W. Happer, T. McClelland, H. Fruehauf, R. Drap, W. Weidemann, and M. Variakojis, “Re-interrogated end-state chip-scale atomic clock,” in Proceedings of 39th Annual Precise Time and Time Interval (PTTI) Meeting, Long Beach, CA, 233–248 (2007).
  15. J. F. DeNatale, R. L. Borwick, C. Tsai, P. A. Stupar, Y. Lin, R. A. Newgard, R. W. Berquist, and M. Zhu, “Compact, low-power chip-scale atomic clock,” in Position, Location and Navigation Symposium, 2008 IEEE/ION, 5–8 May, 67–70, (2008).
  16. P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).
  17. A. H. Daane, D. H. Dennison, and F. H. Spedding, “The preparation of samarium and ytterbium metals,” J. Am. Chem. Soc.75(9), 2272–2273 (1953).
    [CrossRef]
  18. E. J. Onstott, “The preparation of samarium metal with calcium,” J. Am. Chem. Soc.77(3), 812–813 (1955).
    [CrossRef]
  19. Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett.96(8), 083002 (2006).
    [CrossRef] [PubMed]
  20. D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys.2(1), 36–39 (2006).
    [CrossRef]
  21. J. M. Amini, J. Britton, D. Leibfried, and D. J. Wineland, “Microfabricated chip traps for ions,” Atomic Chips (Wiley-VCH, 2012).
  22. T. Hong, C. Cramer, E. Cook, W. Nagourney, and E. N. Fortson, “Observation of the 1S0-3P0 transition in atomic ytterbium for optical clocks and qubit arrays,” Opt. Lett.30(19), 2644–2646 (2005).
    [CrossRef] [PubMed]
  23. R. E. Cavicchi, J. S. Suehle, P. Chaparala, K. G. Kreider, M. Gaitan, and S. Semancik, “Micro-hotplate gas sensor,” Tech. Digest 1994, Sol. State Sensor Actuator Workshop, Hilton Head, SC, 53–56 (1994).
  24. R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
    [CrossRef]
  25. J. McDonald, “Microthermal imaging in the infrared,” http://www.Electronics-Cooling.com/Resources/EC_Articles/JAN97/jan97_04.htm ; http://www.latigooptics.com/pubs&seminars/1997_microthermal_imaging.PDF .
  26. R. P. Manginell, J. H. Smith, A. J. Ricco, D. J. Moreno, R. C. Hughes, R. J. Huber, and S. D. Senturia, “Selective, pulsed CVD of platinum on microbridge gas sensors,” Tech. Digest 1996, Solid State Sensors Actuators Workshop, Hilton Head, SC, 53–56 (1996).
  27. S. S. Narine and A. J. Slavin, “Use of the quartz crystal microbalance to measure the mass of submonolayer deposits: Measuring the stoichiometry of surface oxides,” J. Vac. Sci. Technol. A16(3), 1857–1862 (1998).
    [CrossRef]
  28. S. Knappe, V. Velichansky, H. G. Robinson, J. Kitching, and L. Hollberg, “Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers,” Rev. Sci. Instrum.74(6), 3142 (2003).
    [CrossRef]
  29. L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett.84(14), 2694–2696 (2004).
    [CrossRef]
  30. S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett.30(18), 2351–2353 (2005).
    [CrossRef] [PubMed]
  31. L. A. Liew, J. Moreland, and V. Gerginov, “Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide,” Appl. Phys. Lett.90(11), 114106 (2007).
    [CrossRef]
  32. R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, “A monolithically-integrated μGC chemical sensor system,” Sensors (Basel Switzerland)11(7), 6517–6532 (2011).
    [CrossRef]
  33. D. Prestage and G. L. Weaver, “Atomic clocks and oscillators for deep-space navigation and radio science,” Proc. IEEE95(11), 2235–2247 (2007).
    [CrossRef]
  34. C. Vauchier, D. Charlot, G. Delapierre, and A. Accorsi, “Thinfilm gas catalytic microsensor,” Sens. Actuators, B.5(1–4), 33–36 (1991).
    [CrossRef]
  35. J. J. Lagowski, “Solution phenomena in liquid ammonia,” Pure Appl. Chem.25(2), 429–456 (1971).
    [CrossRef]
  36. J. C. Warf and W. L. Korst, “Solutions of europium and ytterbium metals in liquid ammonia,” J. Phys. Chem.60(11), 1590–1591 (1956).
    [CrossRef]
  37. K. Howell and L. L. Pytlewski, “The decomposition products of solutions of europium and ytterbium metals in liquid ammonia,” J. Less Common Met.19(4), 399–404 (1969).
    [CrossRef]
  38. S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, J. Kitching, and L. Hollberg, “Atomic vapor cells for miniature frequency references,” in Proceedings of 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, Institute of Electrical and Electronics Engineers, New York, 31–32 (2003).
  39. S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express13(4), 1249–1253 (2005).
    [CrossRef] [PubMed]
  40. E. J. Eklund, A. M. Shkel, S. Knappe, E. Donley, and J. Kitching, “Spherical rubidium vapor cells fabricated by micro glass blowing,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2007), Kobe, Japan, 171–174 (2007).
  41. E. J. Eklund and A. M. Shkel, “Glass blowing on a wafer lever,” J. Microelectromech. Syst.16(2), 232–239 (2007).
    [CrossRef]
  42. F. Gong, Y.-Y. Jau, K. Jensen, and W. Happer, “Electrolytic fabrication of atomic clock cells,” Rev. Sci. Instrum.77(7), 076101 (2006).
    [CrossRef]
  43. S. Radhakrishnan and A. Lal, “Alkali metal-wax micropackets for chip-scale atomic clocks,” Digest Tech. Papers of Transducers05, 23–26 (2005).
  44. E. W. Brooman, “Electrodeposition from liquid ammonia solutions,” Electrodep. Surf. Treat.2(1), 1–46 (1973).
    [CrossRef]

2012 (2)

J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, and S. Bize, “Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7 x 10−15,”Phys. Rev. Lett.108(18), 183004 (2012).
[CrossRef] [PubMed]

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+.,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

2011 (2)

P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).

R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, “A monolithically-integrated μGC chemical sensor system,” Sensors (Basel Switzerland)11(7), 6517–6532 (2011).
[CrossRef]

2010 (2)

C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

T. E. Parker, “Long-term comparison of caesium fountain primary frequency standards,” Metrologia47(1), 1–10 (2010).
[CrossRef]

2009 (3)

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

M. A. Perez, U. Nguyen, S. Knappe, E. A. Donley, J. Kitching, and A. M. Shkel, “Rubidium vapor cell with integrated Bragg reflectors for compact atomic MEMS,” Sens. Actuators A Phys.154(2), 295–303 (2009).
[CrossRef]

Ch. Lisdat, J. S. Winfred, T. Middelmann, F. Riehle, and U. Sterr, “Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons,” Phys. Rev. Lett.103(9), 090801 (2009).
[CrossRef] [PubMed]

2008 (3)

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
[CrossRef]

2007 (3)

D. Prestage and G. L. Weaver, “Atomic clocks and oscillators for deep-space navigation and radio science,” Proc. IEEE95(11), 2235–2247 (2007).
[CrossRef]

L. A. Liew, J. Moreland, and V. Gerginov, “Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide,” Appl. Phys. Lett.90(11), 114106 (2007).
[CrossRef]

E. J. Eklund and A. M. Shkel, “Glass blowing on a wafer lever,” J. Microelectromech. Syst.16(2), 232–239 (2007).
[CrossRef]

2006 (4)

F. Gong, Y.-Y. Jau, K. Jensen, and W. Happer, “Electrolytic fabrication of atomic clock cells,” Rev. Sci. Instrum.77(7), 076101 (2006).
[CrossRef]

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett.96(8), 083002 (2006).
[CrossRef] [PubMed]

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys.2(1), 36–39 (2006).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt.8(7), S318–S322 (2006).
[CrossRef]

2005 (4)

2004 (2)

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett.84(14), 2694–2696 (2004).
[CrossRef]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett.85(9), 1460–1462 (2004).
[CrossRef]

2003 (1)

S. Knappe, V. Velichansky, H. G. Robinson, J. Kitching, and L. Hollberg, “Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers,” Rev. Sci. Instrum.74(6), 3142 (2003).
[CrossRef]

1998 (1)

S. S. Narine and A. J. Slavin, “Use of the quartz crystal microbalance to measure the mass of submonolayer deposits: Measuring the stoichiometry of surface oxides,” J. Vac. Sci. Technol. A16(3), 1857–1862 (1998).
[CrossRef]

1991 (1)

C. Vauchier, D. Charlot, G. Delapierre, and A. Accorsi, “Thinfilm gas catalytic microsensor,” Sens. Actuators, B.5(1–4), 33–36 (1991).
[CrossRef]

1973 (1)

E. W. Brooman, “Electrodeposition from liquid ammonia solutions,” Electrodep. Surf. Treat.2(1), 1–46 (1973).
[CrossRef]

1971 (1)

J. J. Lagowski, “Solution phenomena in liquid ammonia,” Pure Appl. Chem.25(2), 429–456 (1971).
[CrossRef]

1969 (1)

K. Howell and L. L. Pytlewski, “The decomposition products of solutions of europium and ytterbium metals in liquid ammonia,” J. Less Common Met.19(4), 399–404 (1969).
[CrossRef]

1956 (1)

J. C. Warf and W. L. Korst, “Solutions of europium and ytterbium metals in liquid ammonia,” J. Phys. Chem.60(11), 1590–1591 (1956).
[CrossRef]

1955 (1)

E. J. Onstott, “The preparation of samarium metal with calcium,” J. Am. Chem. Soc.77(3), 812–813 (1955).
[CrossRef]

1953 (1)

A. H. Daane, D. H. Dennison, and F. H. Spedding, “The preparation of samarium and ytterbium metals,” J. Am. Chem. Soc.75(9), 2272–2273 (1953).
[CrossRef]

Abgrall, M.

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Accorsi, A.

C. Vauchier, D. Charlot, G. Delapierre, and A. Accorsi, “Thinfilm gas catalytic microsensor,” Sens. Actuators, B.5(1–4), 33–36 (1991).
[CrossRef]

Achyuthan, K. E.

R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, “A monolithically-integrated μGC chemical sensor system,” Sensors (Basel Switzerland)11(7), 6517–6532 (2011).
[CrossRef]

Adkins, D. R.

R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
[CrossRef]

Anderson, J. M.

R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, “A monolithically-integrated μGC chemical sensor system,” Sensors (Basel Switzerland)11(7), 6517–6532 (2011).
[CrossRef]

R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
[CrossRef]

Baillard, X.

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Barber, Z. W.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett.96(8), 083002 (2006).
[CrossRef] [PubMed]

Bauer, J. M.

R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, “A monolithically-integrated μGC chemical sensor system,” Sensors (Basel Switzerland)11(7), 6517–6532 (2011).
[CrossRef]

Bize, S.

J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, and S. Bize, “Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7 x 10−15,”Phys. Rev. Lett.108(18), 183004 (2012).
[CrossRef] [PubMed]

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Boye, R.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).

Brooman, E. W.

E. W. Brooman, “Electrodeposition from liquid ammonia solutions,” Electrodep. Surf. Treat.2(1), 1–46 (1973).
[CrossRef]

Bryan, J. R.

R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
[CrossRef]

Casias, A.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).

Chapelet, F.

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Charlot, D.

C. Vauchier, D. Charlot, G. Delapierre, and A. Accorsi, “Thinfilm gas catalytic microsensor,” Sens. Actuators, B.5(1–4), 33–36 (1991).
[CrossRef]

Chicireanu, R.

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Chou, C. W.

C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

Clairon, A.

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Cook, E.

Copic, D.

R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, “A monolithically-integrated μGC chemical sensor system,” Sensors (Basel Switzerland)11(7), 6517–6532 (2011).
[CrossRef]

R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
[CrossRef]

Cramer, C.

Daane, A. H.

A. H. Daane, D. H. Dennison, and F. H. Spedding, “The preparation of samarium and ytterbium metals,” J. Am. Chem. Soc.75(9), 2272–2273 (1953).
[CrossRef]

Dawkins, S. T.

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Delapierre, G.

C. Vauchier, D. Charlot, G. Delapierre, and A. Accorsi, “Thinfilm gas catalytic microsensor,” Sens. Actuators, B.5(1–4), 33–36 (1991).
[CrossRef]

Dennison, D. H.

A. H. Daane, D. H. Dennison, and F. H. Spedding, “The preparation of samarium and ytterbium metals,” J. Am. Chem. Soc.75(9), 2272–2273 (1953).
[CrossRef]

Di Manno, S.

J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, and S. Bize, “Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7 x 10−15,”Phys. Rev. Lett.108(18), 183004 (2012).
[CrossRef] [PubMed]

Diddams, S. A.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Donley, E. A.

M. A. Perez, U. Nguyen, S. Knappe, E. A. Donley, J. Kitching, and A. M. Shkel, “Rubidium vapor cell with integrated Bragg reflectors for compact atomic MEMS,” Sens. Actuators A Phys.154(2), 295–303 (2009).
[CrossRef]

Eklund, E. J.

E. J. Eklund and A. M. Shkel, “Glass blowing on a wafer lever,” J. Microelectromech. Syst.16(2), 232–239 (2007).
[CrossRef]

Fang, L.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).

Fortier, T. M.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Fortson, E. N.

Fouche, M.

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Gerginov, V.

L. A. Liew, J. Moreland, and V. Gerginov, “Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide,” Appl. Phys. Lett.90(11), 114106 (2007).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt.8(7), S318–S322 (2006).
[CrossRef]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett.30(18), 2351–2353 (2005).
[CrossRef] [PubMed]

Gong, F.

F. Gong, Y.-Y. Jau, K. Jensen, and W. Happer, “Electrolytic fabrication of atomic clock cells,” Rev. Sci. Instrum.77(7), 076101 (2006).
[CrossRef]

Grosche, G.

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Guéna, J.

J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, and S. Bize, “Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7 x 10−15,”Phys. Rev. Lett.108(18), 183004 (2012).
[CrossRef] [PubMed]

Hadizadeh, R.

R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
[CrossRef]

Happer, W.

F. Gong, Y.-Y. Jau, K. Jensen, and W. Happer, “Electrolytic fabrication of atomic clock cells,” Rev. Sci. Instrum.77(7), 076101 (2006).
[CrossRef]

Heavner, T. P.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Hensinger, W. K.

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys.2(1), 36–39 (2006).
[CrossRef]

Hietala, V. M.

R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
[CrossRef]

Hollberg, L.

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett.96(8), 083002 (2006).
[CrossRef] [PubMed]

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt.8(7), S318–S322 (2006).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express13(4), 1249–1253 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett.30(18), 2351–2353 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett.85(9), 1460–1462 (2004).
[CrossRef]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett.84(14), 2694–2696 (2004).
[CrossRef]

S. Knappe, V. Velichansky, H. G. Robinson, J. Kitching, and L. Hollberg, “Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers,” Rev. Sci. Instrum.74(6), 3142 (2003).
[CrossRef]

Hong, T.

Howell, K.

K. Howell and L. L. Pytlewski, “The decomposition products of solutions of europium and ytterbium metals in liquid ammonia,” J. Less Common Met.19(4), 399–404 (1969).
[CrossRef]

Hoyt, C. W.

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett.96(8), 083002 (2006).
[CrossRef] [PubMed]

Hume, D. B.

C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

Huntemann, N.

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+.,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

Jau, Y. Y.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).

Jau, Y.-Y.

F. Gong, Y.-Y. Jau, K. Jensen, and W. Happer, “Electrolytic fabrication of atomic clock cells,” Rev. Sci. Instrum.77(7), 076101 (2006).
[CrossRef]

Jefferts, S. R.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Jensen, K.

F. Gong, Y.-Y. Jau, K. Jensen, and W. Happer, “Electrolytic fabrication of atomic clock cells,” Rev. Sci. Instrum.77(7), 076101 (2006).
[CrossRef]

Jiang, Y.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Kitching, J.

M. A. Perez, U. Nguyen, S. Knappe, E. A. Donley, J. Kitching, and A. M. Shkel, “Rubidium vapor cell with integrated Bragg reflectors for compact atomic MEMS,” Sens. Actuators A Phys.154(2), 295–303 (2009).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt.8(7), S318–S322 (2006).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express13(4), 1249–1253 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett.30(18), 2351–2353 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett.85(9), 1460–1462 (2004).
[CrossRef]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett.84(14), 2694–2696 (2004).
[CrossRef]

S. Knappe, V. Velichansky, H. G. Robinson, J. Kitching, and L. Hollberg, “Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers,” Rev. Sci. Instrum.74(6), 3142 (2003).
[CrossRef]

Knappe, S.

M. A. Perez, U. Nguyen, S. Knappe, E. A. Donley, J. Kitching, and A. M. Shkel, “Rubidium vapor cell with integrated Bragg reflectors for compact atomic MEMS,” Sens. Actuators A Phys.154(2), 295–303 (2009).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt.8(7), S318–S322 (2006).
[CrossRef]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett.30(18), 2351–2353 (2005).
[CrossRef] [PubMed]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express13(4), 1249–1253 (2005).
[CrossRef] [PubMed]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett.84(14), 2694–2696 (2004).
[CrossRef]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett.85(9), 1460–1462 (2004).
[CrossRef]

S. Knappe, V. Velichansky, H. G. Robinson, J. Kitching, and L. Hollberg, “Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers,” Rev. Sci. Instrum.74(6), 3142 (2003).
[CrossRef]

Koelemeij, J. C.

C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

Korst, W. L.

J. C. Warf and W. L. Korst, “Solutions of europium and ytterbium metals in liquid ammonia,” J. Phys. Chem.60(11), 1590–1591 (1956).
[CrossRef]

Lagowski, J. J.

J. J. Lagowski, “Solution phenomena in liquid ammonia,” Pure Appl. Chem.25(2), 429–456 (1971).
[CrossRef]

Lal, A.

S. Radhakrishnan and A. Lal, “Alkali metal-wax micropackets for chip-scale atomic clocks,” Digest Tech. Papers of Transducers05, 23–26 (2005).

Laurent, P.

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Le Coq, Y.

J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, and S. Bize, “Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7 x 10−15,”Phys. Rev. Lett.108(18), 183004 (2012).
[CrossRef] [PubMed]

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Le Targat, R.

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Lecallier, A.

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Lemke, N. D.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Lemonde, P.

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Liew, L.

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt.8(7), S318–S322 (2006).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express13(4), 1249–1253 (2005).
[CrossRef] [PubMed]

Liew, L. A.

L. A. Liew, J. Moreland, and V. Gerginov, “Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide,” Appl. Phys. Lett.90(11), 114106 (2007).
[CrossRef]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett.84(14), 2694–2696 (2004).
[CrossRef]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett.85(9), 1460–1462 (2004).
[CrossRef]

Lipphardt, B.

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+.,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Lisdat, Ch.

Ch. Lisdat, J. S. Winfred, T. Middelmann, F. Riehle, and U. Sterr, “Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons,” Phys. Rev. Lett.103(9), 090801 (2009).
[CrossRef] [PubMed]

Ludlow, A. D.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Madsen, M. J.

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys.2(1), 36–39 (2006).
[CrossRef]

Magalhães, D. V.

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Mandache, C.

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Manginell, R. P.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).

R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, “A monolithically-integrated μGC chemical sensor system,” Sensors (Basel Switzerland)11(7), 6517–6532 (2011).
[CrossRef]

R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
[CrossRef]

McFerran, J. J.

J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, and S. Bize, “Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7 x 10−15,”Phys. Rev. Lett.108(18), 183004 (2012).
[CrossRef] [PubMed]

Mejri, S.

J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, and S. Bize, “Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7 x 10−15,”Phys. Rev. Lett.108(18), 183004 (2012).
[CrossRef] [PubMed]

Middelmann, T.

Ch. Lisdat, J. S. Winfred, T. Middelmann, F. Riehle, and U. Sterr, “Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons,” Phys. Rev. Lett.103(9), 090801 (2009).
[CrossRef] [PubMed]

Monroe, C.

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys.2(1), 36–39 (2006).
[CrossRef]

Moorman, M.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).

Moorman, M. W.

R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, “A monolithically-integrated μGC chemical sensor system,” Sensors (Basel Switzerland)11(7), 6517–6532 (2011).
[CrossRef]

R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
[CrossRef]

Moreland, J.

L. A. Liew, J. Moreland, and V. Gerginov, “Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide,” Appl. Phys. Lett.90(11), 114106 (2007).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt.8(7), S318–S322 (2006).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express13(4), 1249–1253 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett.85(9), 1460–1462 (2004).
[CrossRef]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett.84(14), 2694–2696 (2004).
[CrossRef]

Nagourney, W.

Narine, S. S.

S. S. Narine and A. J. Slavin, “Use of the quartz crystal microbalance to measure the mass of submonolayer deposits: Measuring the stoichiometry of surface oxides,” J. Vac. Sci. Technol. A16(3), 1857–1862 (1998).
[CrossRef]

Nguyen, U.

M. A. Perez, U. Nguyen, S. Knappe, E. A. Donley, J. Kitching, and A. M. Shkel, “Rubidium vapor cell with integrated Bragg reflectors for compact atomic MEMS,” Sens. Actuators A Phys.154(2), 295–303 (2009).
[CrossRef]

Oates, C. W.

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett.96(8), 083002 (2006).
[CrossRef] [PubMed]

Okhapkin, M.

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+.,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

Olmschenk, S.

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys.2(1), 36–39 (2006).
[CrossRef]

Onstott, E. J.

E. J. Onstott, “The preparation of samarium metal with calcium,” J. Am. Chem. Soc.77(3), 812–813 (1955).
[CrossRef]

Parker, T. E.

T. E. Parker, “Long-term comparison of caesium fountain primary frequency standards,” Metrologia47(1), 1–10 (2010).
[CrossRef]

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

Partner, H.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).

Peik, E.

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+.,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

Perez, M. A.

M. A. Perez, U. Nguyen, S. Knappe, E. A. Donley, J. Kitching, and A. M. Shkel, “Rubidium vapor cell with integrated Bragg reflectors for compact atomic MEMS,” Sens. Actuators A Phys.154(2), 295–303 (2009).
[CrossRef]

Petersen, M.

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Pfeifer, K. B.

R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
[CrossRef]

Porter, D. A.

R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, “A monolithically-integrated μGC chemical sensor system,” Sensors (Basel Switzerland)11(7), 6517–6532 (2011).
[CrossRef]

R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
[CrossRef]

Prestage, D.

D. Prestage and G. L. Weaver, “Atomic clocks and oscillators for deep-space navigation and radio science,” Proc. IEEE95(11), 2235–2247 (2007).
[CrossRef]

Prestage, J.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).

Pytlewski, L. L.

K. Howell and L. L. Pytlewski, “The decomposition products of solutions of europium and ytterbium metals in liquid ammonia,” J. Less Common Met.19(4), 399–404 (1969).
[CrossRef]

Radhakrishnan, S.

S. Radhakrishnan and A. Lal, “Alkali metal-wax micropackets for chip-scale atomic clocks,” Digest Tech. Papers of Transducers05, 23–26 (2005).

Riehle, F.

Ch. Lisdat, J. S. Winfred, T. Middelmann, F. Riehle, and U. Sterr, “Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons,” Phys. Rev. Lett.103(9), 090801 (2009).
[CrossRef] [PubMed]

Robinson, H.

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett.84(14), 2694–2696 (2004).
[CrossRef]

Robinson, H. G.

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt.8(7), S318–S322 (2006).
[CrossRef]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett.30(18), 2351–2353 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Velichansky, H. G. Robinson, J. Kitching, and L. Hollberg, “Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers,” Rev. Sci. Instrum.74(6), 3142 (2003).
[CrossRef]

Rosenband, T.

C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

Rosenbusch, P.

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Rovera, G. D.

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Rumpf, A.

R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
[CrossRef]

Sanchez, L. J.

R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, “A monolithically-integrated μGC chemical sensor system,” Sensors (Basel Switzerland)11(7), 6517–6532 (2011).
[CrossRef]

Santarelli, G.

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Schnatz, H.

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Schwab, K.

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys.2(1), 36–39 (2006).
[CrossRef]

Schwindt, P. D. D.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt.8(7), S318–S322 (2006).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express13(4), 1249–1253 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett.30(18), 2351–2353 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett.85(9), 1460–1462 (2004).
[CrossRef]

Serkland, D. K.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).

Shah, V.

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt.8(7), S318–S322 (2006).
[CrossRef]

S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett.30(18), 2351–2353 (2005).
[CrossRef] [PubMed]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express13(4), 1249–1253 (2005).
[CrossRef] [PubMed]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett.85(9), 1460–1462 (2004).
[CrossRef]

Shkel, A. M.

M. A. Perez, U. Nguyen, S. Knappe, E. A. Donley, J. Kitching, and A. M. Shkel, “Rubidium vapor cell with integrated Bragg reflectors for compact atomic MEMS,” Sens. Actuators A Phys.154(2), 295–303 (2009).
[CrossRef]

E. J. Eklund and A. M. Shkel, “Glass blowing on a wafer lever,” J. Microelectromech. Syst.16(2), 232–239 (2007).
[CrossRef]

Slavin, A. J.

S. S. Narine and A. J. Slavin, “Use of the quartz crystal microbalance to measure the mass of submonolayer deposits: Measuring the stoichiometry of surface oxides,” J. Vac. Sci. Technol. A16(3), 1857–1862 (1998).
[CrossRef]

Spedding, F. H.

A. H. Daane, D. H. Dennison, and F. H. Spedding, “The preparation of samarium and ytterbium metals,” J. Am. Chem. Soc.75(9), 2272–2273 (1953).
[CrossRef]

Sterr, U.

Ch. Lisdat, J. S. Winfred, T. Middelmann, F. Riehle, and U. Sterr, “Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons,” Phys. Rev. Lett.103(9), 090801 (2009).
[CrossRef] [PubMed]

Stick, D.

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys.2(1), 36–39 (2006).
[CrossRef]

Taichenachev, A. V.

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett.96(8), 083002 (2006).
[CrossRef] [PubMed]

Tamm, C.

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+.,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

Vauchier, C.

C. Vauchier, D. Charlot, G. Delapierre, and A. Accorsi, “Thinfilm gas catalytic microsensor,” Sens. Actuators, B.5(1–4), 33–36 (1991).
[CrossRef]

Velichansky, V.

S. Knappe, V. Velichansky, H. G. Robinson, J. Kitching, and L. Hollberg, “Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers,” Rev. Sci. Instrum.74(6), 3142 (2003).
[CrossRef]

Warf, J. C.

J. C. Warf and W. L. Korst, “Solutions of europium and ytterbium metals in liquid ammonia,” J. Phys. Chem.60(11), 1590–1591 (1956).
[CrossRef]

Weaver, G. L.

D. Prestage and G. L. Weaver, “Atomic clocks and oscillators for deep-space navigation and radio science,” Proc. IEEE95(11), 2235–2247 (2007).
[CrossRef]

Westergaard, P. G.

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

Weyers, S.

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+.,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

Wheeler, D. R.

R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
[CrossRef]

Whiting, J. J.

R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, “A monolithically-integrated μGC chemical sensor system,” Sensors (Basel Switzerland)11(7), 6517–6532 (2011).
[CrossRef]

Wineland, D. J.

C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

Winfred, J. S.

Ch. Lisdat, J. S. Winfred, T. Middelmann, F. Riehle, and U. Sterr, “Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons,” Phys. Rev. Lett.103(9), 090801 (2009).
[CrossRef] [PubMed]

Yi, L.

J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, and S. Bize, “Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7 x 10−15,”Phys. Rev. Lett.108(18), 183004 (2012).
[CrossRef] [PubMed]

Yu, N.

P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).

Yudin, V. I.

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett.96(8), 083002 (2006).
[CrossRef] [PubMed]

Zhang, W.

J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, and S. Bize, “Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7 x 10−15,”Phys. Rev. Lett.108(18), 183004 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett.85(9), 1460–1462 (2004).
[CrossRef]

L. A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, “Microfabricated alkali atom vapor cells,” Appl. Phys. Lett.84(14), 2694–2696 (2004).
[CrossRef]

L. A. Liew, J. Moreland, and V. Gerginov, “Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide,” Appl. Phys. Lett.90(11), 114106 (2007).
[CrossRef]

Digest Tech. Papers of Transducers (1)

S. Radhakrishnan and A. Lal, “Alkali metal-wax micropackets for chip-scale atomic clocks,” Digest Tech. Papers of Transducers05, 23–26 (2005).

Electrodep. Surf. Treat. (1)

E. W. Brooman, “Electrodeposition from liquid ammonia solutions,” Electrodep. Surf. Treat.2(1), 1–46 (1973).
[CrossRef]

Eur. Phys. J. D (1)

X. Baillard, M. Fouche, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz, “An optical lattice clock with spin-polarized 87Sr atoms,” Eur. Phys. J. D48(1), 11–17 (2008).
[CrossRef]

J. Am. Chem. Soc. (2)

A. H. Daane, D. H. Dennison, and F. H. Spedding, “The preparation of samarium and ytterbium metals,” J. Am. Chem. Soc.75(9), 2272–2273 (1953).
[CrossRef]

E. J. Onstott, “The preparation of samarium metal with calcium,” J. Am. Chem. Soc.77(3), 812–813 (1955).
[CrossRef]

J. Less Common Met. (1)

K. Howell and L. L. Pytlewski, “The decomposition products of solutions of europium and ytterbium metals in liquid ammonia,” J. Less Common Met.19(4), 399–404 (1969).
[CrossRef]

J. Microelectromech. Syst. (2)

R. P. Manginell, D. R. Adkins, M. W. Moorman, R. Hadizadeh, D. Copic, D. A. Porter, J. M. Anderson, V. M. Hietala, J. R. Bryan, D. R. Wheeler, K. B. Pfeifer, and A. Rumpf, “Mass-sensitive microfabricated chemical preconcentrator,” J. Microelectromech. Syst.17(6), 1396–1407 (2008).
[CrossRef]

E. J. Eklund and A. M. Shkel, “Glass blowing on a wafer lever,” J. Microelectromech. Syst.16(2), 232–239 (2007).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt.8(7), S318–S322 (2006).
[CrossRef]

J. Phys. Chem. (1)

J. C. Warf and W. L. Korst, “Solutions of europium and ytterbium metals in liquid ammonia,” J. Phys. Chem.60(11), 1590–1591 (1956).
[CrossRef]

J. Vac. Sci. Technol. A (1)

S. S. Narine and A. J. Slavin, “Use of the quartz crystal microbalance to measure the mass of submonolayer deposits: Measuring the stoichiometry of surface oxides,” J. Vac. Sci. Technol. A16(3), 1857–1862 (1998).
[CrossRef]

Metrologia (1)

T. E. Parker, “Long-term comparison of caesium fountain primary frequency standards,” Metrologia47(1), 1–10 (2010).
[CrossRef]

Nat. Phys. (1)

D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Monroe, “Ion trap in a semiconductor chip,” Nat. Phys.2(1), 36–39 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (7)

Z. W. Barber, C. W. Hoyt, C. W. Oates, L. Hollberg, A. V. Taichenachev, and V. I. Yudin, “Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice,” Phys. Rev. Lett.96(8), 083002 (2006).
[CrossRef] [PubMed]

N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett.103(6), 063001 (2009).
[CrossRef] [PubMed]

C. W. Chou, D. B. Hume, J. C. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett.104(7), 070802 (2010).
[CrossRef] [PubMed]

J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, and S. Bize, “Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty=5.7 x 10−15,”Phys. Rev. Lett.108(18), 183004 (2012).
[CrossRef] [PubMed]

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+.,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

Ch. Lisdat, J. S. Winfred, T. Middelmann, F. Riehle, and U. Sterr, “Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons,” Phys. Rev. Lett.103(9), 090801 (2009).
[CrossRef] [PubMed]

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Proc. IEEE (1)

D. Prestage and G. L. Weaver, “Atomic clocks and oscillators for deep-space navigation and radio science,” Proc. IEEE95(11), 2235–2247 (2007).
[CrossRef]

Proc. SPIE (1)

P. D. D. Schwindt, Y. Y. Jau, H. Partner, D. K. Serkland, R. Boye, L. Fang, A. Casias, R. P. Manginell, M. Moorman, J. Prestage, and N. Yu, “Micro ion frequency standard,” Proc. SPIE8031, 803100 (2011).

Pure Appl. Chem. (1)

J. J. Lagowski, “Solution phenomena in liquid ammonia,” Pure Appl. Chem.25(2), 429–456 (1971).
[CrossRef]

Rev. Sci. Instrum. (2)

S. Knappe, V. Velichansky, H. G. Robinson, J. Kitching, and L. Hollberg, “Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers,” Rev. Sci. Instrum.74(6), 3142 (2003).
[CrossRef]

F. Gong, Y.-Y. Jau, K. Jensen, and W. Happer, “Electrolytic fabrication of atomic clock cells,” Rev. Sci. Instrum.77(7), 076101 (2006).
[CrossRef]

Sens. Actuators A Phys. (1)

M. A. Perez, U. Nguyen, S. Knappe, E. A. Donley, J. Kitching, and A. M. Shkel, “Rubidium vapor cell with integrated Bragg reflectors for compact atomic MEMS,” Sens. Actuators A Phys.154(2), 295–303 (2009).
[CrossRef]

Sens. Actuators, B. (1)

C. Vauchier, D. Charlot, G. Delapierre, and A. Accorsi, “Thinfilm gas catalytic microsensor,” Sens. Actuators, B.5(1–4), 33–36 (1991).
[CrossRef]

Sensors (Basel Switzerland) (1)

R. P. Manginell, J. M. Bauer, M. W. Moorman, L. J. Sanchez, J. M. Anderson, J. J. Whiting, D. A. Porter, D. Copic, and K. E. Achyuthan, “A monolithically-integrated μGC chemical sensor system,” Sensors (Basel Switzerland)11(7), 6517–6532 (2011).
[CrossRef]

Other (10)

S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, J. Kitching, and L. Hollberg, “Atomic vapor cells for miniature frequency references,” in Proceedings of 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, Institute of Electrical and Electronics Engineers, New York, 31–32 (2003).

R. E. Cavicchi, J. S. Suehle, P. Chaparala, K. G. Kreider, M. Gaitan, and S. Semancik, “Micro-hotplate gas sensor,” Tech. Digest 1994, Sol. State Sensor Actuator Workshop, Hilton Head, SC, 53–56 (1994).

J. McDonald, “Microthermal imaging in the infrared,” http://www.Electronics-Cooling.com/Resources/EC_Articles/JAN97/jan97_04.htm ; http://www.latigooptics.com/pubs&seminars/1997_microthermal_imaging.PDF .

R. P. Manginell, J. H. Smith, A. J. Ricco, D. J. Moreno, R. C. Hughes, R. J. Huber, and S. D. Senturia, “Selective, pulsed CVD of platinum on microbridge gas sensors,” Tech. Digest 1996, Solid State Sensors Actuators Workshop, Hilton Head, SC, 53–56 (1996).

R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake, “The MAC – A miniature atomic clock,” in Proceedings of 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, L. Breakiron, ed., 752–757 (2005).

S. Knappe, “MEMS atomic clocks,” in Comprehensive Microsystems, Vol. 3 (Elsevier, 2007), 571-612.

A. M. Braun, T. J. Davis, M. H. Kwakernaak, J. J. Michalchuk, A. Ulmer, W. K. Chan, J. H. Abeles, Z. A. Shellenbarger, Y. Y. Jau, W. Happer, T. McClelland, H. Fruehauf, R. Drap, W. Weidemann, and M. Variakojis, “Re-interrogated end-state chip-scale atomic clock,” in Proceedings of 39th Annual Precise Time and Time Interval (PTTI) Meeting, Long Beach, CA, 233–248 (2007).

J. F. DeNatale, R. L. Borwick, C. Tsai, P. A. Stupar, Y. Lin, R. A. Newgard, R. W. Berquist, and M. Zhu, “Compact, low-power chip-scale atomic clock,” in Position, Location and Navigation Symposium, 2008 IEEE/ION, 5–8 May, 67–70, (2008).

J. M. Amini, J. Britton, D. Leibfried, and D. J. Wineland, “Microfabricated chip traps for ions,” Atomic Chips (Wiley-VCH, 2012).

E. J. Eklund, A. M. Shkel, S. Knappe, E. Donley, and J. Kitching, “Spherical rubidium vapor cells fabricated by micro glass blowing,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2007), Kobe, Japan, 171–174 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Images of a completed microhotplate. (a) Solid model of the front side of a microhotplate. The yellowish ‘L’-shaped regions are where the aluminum bond pads are located. (b) SEM with scale bar (200 μm) from a working distance (WD) of 19.6 mm, and an EHT of 20.00 kV, showing the front surface. (c) Backside SEM taken at 45° to illustrate the thickness of Yb-holding well (volume, 0.707 mm3).

Fig. 2
Fig. 2

(a) Photograph of a microhotplate well which is 1.5 mm in diameter and 0.4 mm deep (height); b) Infrared microscope (IR) image of a powered microhotplate showing its thermal scan.

Fig. 3
Fig. 3

Schematic of Yb dissolution in anhydrous liquid ammonia. The reaction vessel was evacuated and back-filled with anhydrous ammonia. Brief (5 sec) cooling of the vessel under the device condensed a small amount of ammonia and reflowed the Yb. The condensed ammonia was allowed to evaporate in the closed system. After one minute, the excess ammonia was removed under vacuum and the metal deposition was confirmed by examining the microhotplate well using a VistaVision light microscope.

Fig. 4
Fig. 4

Yb deposition test assembly. The microhotplate Yb source vacuum mount is shown on the top left and after it is inserted into the vacuum chamber on the top right. The final location of the vacuum chamber in the test assembly is indicated by the arrow. The various measurement instruments (QCM, PMT, RGA) are also indicated.

Fig. 5
Fig. 5

SEM and EDS results of the microhotplate coated with Yb using the anhydrous liquid ammonia technique. The EDS tracings show the presence of Yb. The black-and-white inset is the SEM image of the microhotplate showing Yb deposition. The blue inset shows the same Yb deposition by EDS. The magnification was 43X, the filament potential was 15.0 kV, and working distance (WD) was 14.9 mm from the SEM pole piece (focal length). The scale bar is 500 μm for both inset images.

Fig. 6
Fig. 6

In situ evaporation of Yb from a microhotplate well. The Yb was deposited into the microhotplate well using anhydrous liquid ammonia. The heat pulse caused an apparent drop in mass at first, then the QCM frequency change properly indicated Yb evaporation. The measurement parameters are color coded and numbered as follows: microhotplate temperature, red tracing, # 1; PMT counts per 10 ms, black tracing # 2; QCM response, blue tracing, # 3.

Fig. 8
Fig. 8

Responses from QCM, fluorescence and temperature, indicating the evaporation of Yb from the microhotplate well. For this experiment, thin film evaporation was used to deposit the Yb metal inside the microhotplate well. The measurement parameters are color coded and numbered as follows: microhotplate temperature, red tracing, # 1; PMT counts per 10 ms, black tracing, # 2; QCM response, blue tracing, # 3.

Fig. 7
Fig. 7

SEM and EDS data for a microhotplate with liquid-ammonia-deposited Yb. The central SEM shows the Yb as-deposited. The remaining data were taken after evaporation of the Yb from the microhotplate. Details are similar to those in the legend to Fig. 5.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R=116.3+0.0023 T 1.627 Ω
Δm= AΔf ρμ 2 f o 2 ,

Metrics