Abstract

The solid interface of different slopes plays a significant role in influencing focus range and image quality of liquid controllable optical lens. In this paper, based on the theoretical model of liquid optical lens, the spherical aberration of the liquid optical lens is calculated. It is found that the spherical aberration is different from the two opposite sides of liquid optical lens, and at the same voltage range, the smaller the cone angle of the solid interface is, the larger the optical aperture of liquid optical lens changes. The spherical aberration of liquid lens can be minimized when a proper voltage is applied and a proper solid interface slope is selected.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Berge and J. Peseux, “Variable Focal Lens Controlled by An External Voltage: An Application of Electrowetting,” J. Eur. Phys. J. E.3(2), 159–163 (2000).
    [CrossRef]
  2. C. Quilliet and B. Berge, “Investigation of Effective Interface Potentials by Electrowetting,” Europhys. Lett.60(1), 99–105 (2002).
    [CrossRef]
  3. B. Berge, “Liquid Lens Technology: Principle of Electrowetting Based Lenses and Applications to Image,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (Miami, 2005), pp. 227–230.
  4. S. Kuiper and B. H. W. Hendriks, “Variable-focus Liquid Lens for Miniature Cameras,” Appl. Phys. Lett.85(7), 1128–1131 (2004).
    [CrossRef]
  5. B. Raj, M. Dhindsa, N. R. Smith, R. Laughlin, and J. Heikenfeld, “Ion and Liquid Dependent Dielectric Failure in Electrowetting Systems,” Langmuir25(20), 12387–12392 (2009).
    [CrossRef] [PubMed]
  6. H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Liquid-based Infrared Optical Switch,” Appl. Phys. Lett.101(4), 041104 (2012), http://apl.aip.org/resource/1/applab/v101/i4/p041104_s1 .
    [CrossRef]
  7. H. Liu, S. Dharmatilleke, D. K. Maurya, and A. A. O. Tay, “Dielectric Materials for Electrowetting-on-dielectric Actuation,” Microsyst.Technol.16(3), 449–460 (2010).
    [CrossRef]
  8. L. K. Koopal, “Wetting of Solid Surfaces: Fundamentals and Charge effects,” Adv. Colloid Interface Sci.179-182, 29–42 (2012).
    [CrossRef] [PubMed]

2012 (2)

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Liquid-based Infrared Optical Switch,” Appl. Phys. Lett.101(4), 041104 (2012), http://apl.aip.org/resource/1/applab/v101/i4/p041104_s1 .
[CrossRef]

L. K. Koopal, “Wetting of Solid Surfaces: Fundamentals and Charge effects,” Adv. Colloid Interface Sci.179-182, 29–42 (2012).
[CrossRef] [PubMed]

2010 (1)

H. Liu, S. Dharmatilleke, D. K. Maurya, and A. A. O. Tay, “Dielectric Materials for Electrowetting-on-dielectric Actuation,” Microsyst.Technol.16(3), 449–460 (2010).
[CrossRef]

2009 (1)

B. Raj, M. Dhindsa, N. R. Smith, R. Laughlin, and J. Heikenfeld, “Ion and Liquid Dependent Dielectric Failure in Electrowetting Systems,” Langmuir25(20), 12387–12392 (2009).
[CrossRef] [PubMed]

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus Liquid Lens for Miniature Cameras,” Appl. Phys. Lett.85(7), 1128–1131 (2004).
[CrossRef]

2002 (1)

C. Quilliet and B. Berge, “Investigation of Effective Interface Potentials by Electrowetting,” Europhys. Lett.60(1), 99–105 (2002).
[CrossRef]

2000 (1)

B. Berge and J. Peseux, “Variable Focal Lens Controlled by An External Voltage: An Application of Electrowetting,” J. Eur. Phys. J. E.3(2), 159–163 (2000).
[CrossRef]

Berge, B.

C. Quilliet and B. Berge, “Investigation of Effective Interface Potentials by Electrowetting,” Europhys. Lett.60(1), 99–105 (2002).
[CrossRef]

B. Berge and J. Peseux, “Variable Focal Lens Controlled by An External Voltage: An Application of Electrowetting,” J. Eur. Phys. J. E.3(2), 159–163 (2000).
[CrossRef]

Dharmatilleke, S.

H. Liu, S. Dharmatilleke, D. K. Maurya, and A. A. O. Tay, “Dielectric Materials for Electrowetting-on-dielectric Actuation,” Microsyst.Technol.16(3), 449–460 (2010).
[CrossRef]

Dhindsa, M.

B. Raj, M. Dhindsa, N. R. Smith, R. Laughlin, and J. Heikenfeld, “Ion and Liquid Dependent Dielectric Failure in Electrowetting Systems,” Langmuir25(20), 12387–12392 (2009).
[CrossRef] [PubMed]

Heikenfeld, J.

B. Raj, M. Dhindsa, N. R. Smith, R. Laughlin, and J. Heikenfeld, “Ion and Liquid Dependent Dielectric Failure in Electrowetting Systems,” Langmuir25(20), 12387–12392 (2009).
[CrossRef] [PubMed]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus Liquid Lens for Miniature Cameras,” Appl. Phys. Lett.85(7), 1128–1131 (2004).
[CrossRef]

Koopal, L. K.

L. K. Koopal, “Wetting of Solid Surfaces: Fundamentals and Charge effects,” Adv. Colloid Interface Sci.179-182, 29–42 (2012).
[CrossRef] [PubMed]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus Liquid Lens for Miniature Cameras,” Appl. Phys. Lett.85(7), 1128–1131 (2004).
[CrossRef]

Laughlin, R.

B. Raj, M. Dhindsa, N. R. Smith, R. Laughlin, and J. Heikenfeld, “Ion and Liquid Dependent Dielectric Failure in Electrowetting Systems,” Langmuir25(20), 12387–12392 (2009).
[CrossRef] [PubMed]

Liu, H.

H. Liu, S. Dharmatilleke, D. K. Maurya, and A. A. O. Tay, “Dielectric Materials for Electrowetting-on-dielectric Actuation,” Microsyst.Technol.16(3), 449–460 (2010).
[CrossRef]

Liu, Y.

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Liquid-based Infrared Optical Switch,” Appl. Phys. Lett.101(4), 041104 (2012), http://apl.aip.org/resource/1/applab/v101/i4/p041104_s1 .
[CrossRef]

Maurya, D. K.

H. Liu, S. Dharmatilleke, D. K. Maurya, and A. A. O. Tay, “Dielectric Materials for Electrowetting-on-dielectric Actuation,” Microsyst.Technol.16(3), 449–460 (2010).
[CrossRef]

Peseux, J.

B. Berge and J. Peseux, “Variable Focal Lens Controlled by An External Voltage: An Application of Electrowetting,” J. Eur. Phys. J. E.3(2), 159–163 (2000).
[CrossRef]

Quilliet, C.

C. Quilliet and B. Berge, “Investigation of Effective Interface Potentials by Electrowetting,” Europhys. Lett.60(1), 99–105 (2002).
[CrossRef]

Raj, B.

B. Raj, M. Dhindsa, N. R. Smith, R. Laughlin, and J. Heikenfeld, “Ion and Liquid Dependent Dielectric Failure in Electrowetting Systems,” Langmuir25(20), 12387–12392 (2009).
[CrossRef] [PubMed]

Ren, H.

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Liquid-based Infrared Optical Switch,” Appl. Phys. Lett.101(4), 041104 (2012), http://apl.aip.org/resource/1/applab/v101/i4/p041104_s1 .
[CrossRef]

Smith, N. R.

B. Raj, M. Dhindsa, N. R. Smith, R. Laughlin, and J. Heikenfeld, “Ion and Liquid Dependent Dielectric Failure in Electrowetting Systems,” Langmuir25(20), 12387–12392 (2009).
[CrossRef] [PubMed]

Tay, A. A. O.

H. Liu, S. Dharmatilleke, D. K. Maurya, and A. A. O. Tay, “Dielectric Materials for Electrowetting-on-dielectric Actuation,” Microsyst.Technol.16(3), 449–460 (2010).
[CrossRef]

Wu, S. T.

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Liquid-based Infrared Optical Switch,” Appl. Phys. Lett.101(4), 041104 (2012), http://apl.aip.org/resource/1/applab/v101/i4/p041104_s1 .
[CrossRef]

Xu, S.

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Liquid-based Infrared Optical Switch,” Appl. Phys. Lett.101(4), 041104 (2012), http://apl.aip.org/resource/1/applab/v101/i4/p041104_s1 .
[CrossRef]

Adv. Colloid Interface Sci. (1)

L. K. Koopal, “Wetting of Solid Surfaces: Fundamentals and Charge effects,” Adv. Colloid Interface Sci.179-182, 29–42 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Liquid-based Infrared Optical Switch,” Appl. Phys. Lett.101(4), 041104 (2012), http://apl.aip.org/resource/1/applab/v101/i4/p041104_s1 .
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus Liquid Lens for Miniature Cameras,” Appl. Phys. Lett.85(7), 1128–1131 (2004).
[CrossRef]

Europhys. Lett. (1)

C. Quilliet and B. Berge, “Investigation of Effective Interface Potentials by Electrowetting,” Europhys. Lett.60(1), 99–105 (2002).
[CrossRef]

J. Eur. Phys. J. E. (1)

B. Berge and J. Peseux, “Variable Focal Lens Controlled by An External Voltage: An Application of Electrowetting,” J. Eur. Phys. J. E.3(2), 159–163 (2000).
[CrossRef]

Langmuir (1)

B. Raj, M. Dhindsa, N. R. Smith, R. Laughlin, and J. Heikenfeld, “Ion and Liquid Dependent Dielectric Failure in Electrowetting Systems,” Langmuir25(20), 12387–12392 (2009).
[CrossRef] [PubMed]

Microsyst.Technol. (1)

H. Liu, S. Dharmatilleke, D. K. Maurya, and A. A. O. Tay, “Dielectric Materials for Electrowetting-on-dielectric Actuation,” Microsyst.Technol.16(3), 449–460 (2010).
[CrossRef]

Other (1)

B. Berge, “Liquid Lens Technology: Principle of Electrowetting Based Lenses and Applications to Image,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (Miami, 2005), pp. 227–230.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Calculation sketch of spherical aberration with the incident light from the liquid of small refractive index to the liquid of large refractive index.

Fig. 2
Fig. 2

Calculation sketch of spherical aberration with the incident light from the liquid of large refractive index to the liquid of small refractive index.

Fig. 3
Fig. 3

The slope interface shape of solid phase.

Fig. 4
Fig. 4

(a) The meniscus shape of liquid lens with cone angle α of 30 degrees. (b) Curves of spherical aberration with the incident light from the liquid of small refractive index. (c) Curves of spherical aberration with the incident light from the liquid of large refractive index.

Fig. 5
Fig. 5

(a) The meniscus shape of liquid lens with cone angle α of 45 degrees. (b) Curves of spherical aberration with the incident light from the liquid of small refractive index. (c) Curves of spherical aberration with the incident light from the liquid of large refractive index.

Fig. 6
Fig. 6

(a) The meniscus shape of liquid lens with cone angle α of 60 degrees. (b) Curves of spherical aberration with the incident light from the liquid of small refractive index. (c) Curves of spherical aberration with the incident light from the liquid of large refractive index.

Fig. 7
Fig. 7

(a) The meniscus shape of liquid lens with cone angle α of 75 degrees. (b) Curves of spherical aberration with the incident light from the liquid of small refractive index. (c) Curves of spherical aberration with the incident light from the liquid of large refractive index.

Fig. 8
Fig. 8

(a) Curves of the relation between voltage and the aperture of liquid lens with cone angle α of 30 degrees. (b) Curves of the relation between voltage and the aperture of liquid lens with cone angle α of 45 degrees. (c) Curves of the relation between voltage and the aperture of liquid lens with cone angle α of 60 degrees. (d) Curves of the relation between voltage and the aperture of liquid lens with cone angle α of 75 degrees.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S 0 =- n 2 r( n 2 - n 1 ).
δS=S- S 0 .
tan θ i = dz dx .
n 1 sin θ i = n 2 sinθo.
S= x tan(θi-θo) .
cosθ(V)=cos θ 0 + ε 0 ε 2d γ lv V 2 .
θ 0 =120, γ lv =77 .1354mJ/m 2 ,ε=2.65, n 1 =1.333, n 2 =1.404.

Metrics