Abstract

Structured illumination microscopy (SIM) has grown into a family of methods which achieve optical sectioning, resolution beyond the Abbe limit, or a combination of both effects in optical microscopy. SIM techniques rely on illumination of a sample with patterns of light which must be shifted between each acquired image. The patterns are typically created with physical gratings or masks, and the final optically sectioned or high resolution image is obtained computationally after data acquisition. We used a flexible, high speed ferroelectric liquid crystal microdisplay for definition of the illumination pattern coupled with widefield detection. Focusing on optical sectioning, we developed a unique and highly accurate calibration approach which allowed us to determine a mathematical model describing the mapping of the illumination pattern from the microdisplay to the camera sensor. This is important for higher performance image processing methods such as scaled subtraction of the out of focus light, which require knowledge of the illumination pattern position in the acquired data. We evaluated the signal to noise ratio and the sectioning ability of the reconstructed images for several data processing methods and illumination patterns with a wide range of spatial frequencies. We present our results on a thin fluorescent layer sample and also on biological samples, where we achieved thinner optical sections than either confocal laser scanning or spinning disk microscopes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Heintzmann, “Structured illumination methods,” in Handbook of Biological Confocal Microscopy 3rd ed., J. B. Pawley, ed. (Springer Science + Business Media, 2006), pp. 265–279.
  2. T. Wilson, “Optical sectioning in fluorescence microscopy,” J. Microsc.242(2), 111–116 (2011).
    [CrossRef] [PubMed]
  3. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997).
    [CrossRef] [PubMed]
  4. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
    [CrossRef] [PubMed]
  5. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
    [CrossRef]
  6. F. Chasles, B. Dubertret, and A. C. Boccara, “Optimization and characterization of a structured illumination microscope,” Opt. Express15(24), 16130–16140 (2007).
    [CrossRef] [PubMed]
  7. T. Fukano and A. Miyawaki, “Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples,” Appl. Opt.42(19), 4119–4124 (2003).
    [CrossRef] [PubMed]
  8. T. Fukano, A. Sawano, Y. Ohba, M. Matsuda, and A. Miyawaki, “Differential Ras activation between caveolae/raft and non-raft microdomains,” Cell Struct. Funct.32(1), 9–15 (2007).
    [CrossRef] [PubMed]
  9. D. M. Rector, D. M. Ranken, and J. S. George, “High-performance confocal system for microscopic or endoscopic applications,” Methods30(1), 16–27 (2003).
    [CrossRef] [PubMed]
  10. S. Monneret, M. Rauzi, and P. F. Lenne, “Highly flexible whole-field sectioning microscope with liquid-crystal light modulator,” J. Opt. A, Pure Appl. Opt.8(7), S461–S466 (2006).
    [CrossRef]
  11. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
    [CrossRef] [PubMed]
  12. L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011).
    [CrossRef] [PubMed]
  13. G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. deVries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech.72, 431–440 (2009).
    [CrossRef] [PubMed]
  14. G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope,” Proc. SPIE6441, 64410S (2007).
  15. R. Heintzmann and P. A. Benedetti, “High-resolution image reconstruction in fluorescence microscopy with patterned excitation,” Appl. Opt.45(20), 5037–5045 (2006).
    [CrossRef] [PubMed]
  16. D. Armitage, I. Underwood, and S.-T. Wu, Introduction to Microdisplays (John Wiley and Sons, 2006), p. 377.
  17. R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, and T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc.204(2), 119–135 (2001).
    [CrossRef] [PubMed]
  18. C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Opt. Express14(16), 7198–7209 (2006).
    [CrossRef] [PubMed]
  19. M. Šonka, V. Hlaváč, and R. Boyle, Image Processing Analysis and Machine Vision 2nd ed. (PWS Publishing, 1998), p. 770.
  20. D. C. Brown, “Decentering distortion of lenses,” Photogramm. Eng.32, 444–462 (1966).
  21. J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Mach. Intell.14(10), 965–980 (1992).
    [CrossRef]
  22. J. A. Noble, “Descriptions of image surfaces,” (University of Oxford, Oxford, 1989).
  23. M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
    [CrossRef] [PubMed]
  24. Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. J. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc.196(3), 317–331 (1999).
    [CrossRef] [PubMed]
  25. P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. vanVliet, and T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc.189(3), 192–198 (1998).
    [CrossRef]
  26. R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt.11(6), 064011 (2006).
    [CrossRef] [PubMed]
  27. P. A. A. DeBeule, A. H. B. deVries, D. J. Arndt-Jovin, and T. M. Jovin, “Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD),” Proc. SPIE7932(1), 79320G (2011).
    [CrossRef]
  28. P. Křížek and G. M. Hagen, “Spatial light modulators in fluorescence microscopy,” in Microscopy: Science, Technology, Applications and Education 4th ed., A. Méndez-Vilas and J. Díaz, eds. (Formatex, 2010), pp. 1366–1377.
  29. L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009).
    [CrossRef] [PubMed]
  30. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
    [CrossRef] [PubMed]

2011

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011).
[CrossRef] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

T. Wilson, “Optical sectioning in fluorescence microscopy,” J. Microsc.242(2), 111–116 (2011).
[CrossRef] [PubMed]

P. A. A. DeBeule, A. H. B. deVries, D. J. Arndt-Jovin, and T. M. Jovin, “Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD),” Proc. SPIE7932(1), 79320G (2011).
[CrossRef]

2009

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009).
[CrossRef] [PubMed]

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. deVries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech.72, 431–440 (2009).
[CrossRef] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
[CrossRef] [PubMed]

2007

T. Fukano, A. Sawano, Y. Ohba, M. Matsuda, and A. Miyawaki, “Differential Ras activation between caveolae/raft and non-raft microdomains,” Cell Struct. Funct.32(1), 9–15 (2007).
[CrossRef] [PubMed]

G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope,” Proc. SPIE6441, 64410S (2007).

F. Chasles, B. Dubertret, and A. C. Boccara, “Optimization and characterization of a structured illumination microscope,” Opt. Express15(24), 16130–16140 (2007).
[CrossRef] [PubMed]

2006

R. Heintzmann and P. A. Benedetti, “High-resolution image reconstruction in fluorescence microscopy with patterned excitation,” Appl. Opt.45(20), 5037–5045 (2006).
[CrossRef] [PubMed]

C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Opt. Express14(16), 7198–7209 (2006).
[CrossRef] [PubMed]

S. Monneret, M. Rauzi, and P. F. Lenne, “Highly flexible whole-field sectioning microscope with liquid-crystal light modulator,” J. Opt. A, Pure Appl. Opt.8(7), S461–S466 (2006).
[CrossRef]

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt.11(6), 064011 (2006).
[CrossRef] [PubMed]

2003

D. M. Rector, D. M. Ranken, and J. S. George, “High-performance confocal system for microscopic or endoscopic applications,” Methods30(1), 16–27 (2003).
[CrossRef] [PubMed]

T. Fukano and A. Miyawaki, “Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples,” Appl. Opt.42(19), 4119–4124 (2003).
[CrossRef] [PubMed]

2001

R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, and T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc.204(2), 119–135 (2001).
[CrossRef] [PubMed]

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

2000

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

1999

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
[CrossRef]

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. J. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc.196(3), 317–331 (1999).
[CrossRef] [PubMed]

1998

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. vanVliet, and T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc.189(3), 192–198 (1998).
[CrossRef]

1997

1992

J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Mach. Intell.14(10), 965–980 (1992).
[CrossRef]

1966

D. C. Brown, “Decentering distortion of lenses,” Photogramm. Eng.32, 444–462 (1966).

Arndt-Jovin, D.

R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, and T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc.204(2), 119–135 (2001).
[CrossRef] [PubMed]

Arndt-Jovin, D. J.

P. A. A. DeBeule, A. H. B. deVries, D. J. Arndt-Jovin, and T. M. Jovin, “Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD),” Proc. SPIE7932(1), 79320G (2011).
[CrossRef]

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. deVries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech.72, 431–440 (2009).
[CrossRef] [PubMed]

G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope,” Proc. SPIE6441, 64410S (2007).

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. J. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc.196(3), 317–331 (1999).
[CrossRef] [PubMed]

Barisas, B. G.

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. deVries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech.72, 431–440 (2009).
[CrossRef] [PubMed]

Benedetti, P. A.

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Boccara, A. C.

Brown, D. C.

D. C. Brown, “Decentering distortion of lenses,” Photogramm. Eng.32, 444–462 (1966).

Caarls, W.

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. deVries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech.72, 431–440 (2009).
[CrossRef] [PubMed]

G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope,” Proc. SPIE6441, 64410S (2007).

Chasles, F.

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
[CrossRef] [PubMed]

Cohen, P.

J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Mach. Intell.14(10), 965–980 (1992).
[CrossRef]

Cole, M. J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

Cremer, C.

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
[CrossRef]

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Dayel, M. J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

DeBeule, P. A. A.

P. A. A. DeBeule, A. H. B. deVries, D. J. Arndt-Jovin, and T. M. Jovin, “Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD),” Proc. SPIE7932(1), 79320G (2011).
[CrossRef]

deVries, A. H. B.

P. A. A. DeBeule, A. H. B. deVries, D. J. Arndt-Jovin, and T. M. Jovin, “Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD),” Proc. SPIE7932(1), 79320G (2011).
[CrossRef]

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. deVries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech.72, 431–440 (2009).
[CrossRef] [PubMed]

Dowling, K.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

Dubertret, B.

French, P. M. W.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

Fritsch, C.

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. deVries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech.72, 431–440 (2009).
[CrossRef] [PubMed]

G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope,” Proc. SPIE6441, 64410S (2007).

Fukano, T.

T. Fukano, A. Sawano, Y. Ohba, M. Matsuda, and A. Miyawaki, “Differential Ras activation between caveolae/raft and non-raft microdomains,” Cell Struct. Funct.32(1), 9–15 (2007).
[CrossRef] [PubMed]

T. Fukano and A. Miyawaki, “Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples,” Appl. Opt.42(19), 4119–4124 (2003).
[CrossRef] [PubMed]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Gemkow, M. J.

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. J. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc.196(3), 317–331 (1999).
[CrossRef] [PubMed]

George, J. S.

D. M. Rector, D. M. Ranken, and J. S. George, “High-performance confocal system for microscopic or endoscopic applications,” Methods30(1), 16–27 (2003).
[CrossRef] [PubMed]

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011).
[CrossRef] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

Hagen, G. M.

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. deVries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech.72, 431–440 (2009).
[CrossRef] [PubMed]

G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope,” Proc. SPIE6441, 64410S (2007).

Hanley, Q. S.

R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, and T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc.204(2), 119–135 (2001).
[CrossRef] [PubMed]

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. J. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc.196(3), 317–331 (1999).
[CrossRef] [PubMed]

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. vanVliet, and T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc.189(3), 192–198 (1998).
[CrossRef]

Heintzmann, R.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009).
[CrossRef] [PubMed]

R. Heintzmann and P. A. Benedetti, “High-resolution image reconstruction in fluorescence microscopy with patterned excitation,” Appl. Opt.45(20), 5037–5045 (2006).
[CrossRef] [PubMed]

R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, and T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc.204(2), 119–135 (2001).
[CrossRef] [PubMed]

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
[CrossRef]

Herniou, M.

J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Mach. Intell.14(10), 965–980 (1992).
[CrossRef]

Hill, A.

G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope,” Proc. SPIE6441, 64410S (2007).

Hirvonen, L. M.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009).
[CrossRef] [PubMed]

Jones, R.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

Jovin, T. M.

P. A. A. DeBeule, A. H. B. deVries, D. J. Arndt-Jovin, and T. M. Jovin, “Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD),” Proc. SPIE7932(1), 79320G (2011).
[CrossRef]

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. deVries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech.72, 431–440 (2009).
[CrossRef] [PubMed]

G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope,” Proc. SPIE6441, 64410S (2007).

R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, and T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc.204(2), 119–135 (2001).
[CrossRef] [PubMed]

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. J. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc.196(3), 317–331 (1999).
[CrossRef] [PubMed]

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. vanVliet, and T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc.189(3), 192–198 (1998).
[CrossRef]

Juskaitis, R.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

Juškaitis, R.

Kempe, M.

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt.11(6), 064011 (2006).
[CrossRef] [PubMed]

Kner, P.

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011).
[CrossRef] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
[CrossRef] [PubMed]

Lenne, P. F.

S. Monneret, M. Rauzi, and P. F. Lenne, “Highly flexible whole-field sectioning microscope with liquid-crystal light modulator,” J. Opt. A, Pure Appl. Opt.8(7), S461–S466 (2006).
[CrossRef]

Lever, M. J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

Lidke, K. A.

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. deVries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech.72, 431–440 (2009).
[CrossRef] [PubMed]

G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope,” Proc. SPIE6441, 64410S (2007).

Mandula, O.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009).
[CrossRef] [PubMed]

Matsuda, M.

T. Fukano, A. Sawano, Y. Ohba, M. Matsuda, and A. Miyawaki, “Differential Ras activation between caveolae/raft and non-raft microdomains,” Cell Struct. Funct.32(1), 9–15 (2007).
[CrossRef] [PubMed]

Mertz, J.

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Miyawaki, A.

T. Fukano, A. Sawano, Y. Ohba, M. Matsuda, and A. Miyawaki, “Differential Ras activation between caveolae/raft and non-raft microdomains,” Cell Struct. Funct.32(1), 9–15 (2007).
[CrossRef] [PubMed]

T. Fukano and A. Miyawaki, “Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples,” Appl. Opt.42(19), 4119–4124 (2003).
[CrossRef] [PubMed]

Monneret, S.

S. Monneret, M. Rauzi, and P. F. Lenne, “Highly flexible whole-field sectioning microscope with liquid-crystal light modulator,” J. Opt. A, Pure Appl. Opt.8(7), S461–S466 (2006).
[CrossRef]

Neil, M. A. A.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997).
[CrossRef] [PubMed]

Ohba, Y.

T. Fukano, A. Sawano, Y. Ohba, M. Matsuda, and A. Miyawaki, “Differential Ras activation between caveolae/raft and non-raft microdomains,” Cell Struct. Funct.32(1), 9–15 (2007).
[CrossRef] [PubMed]

Parsons-Karavassilis, D.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Ranken, D. M.

D. M. Rector, D. M. Ranken, and J. S. George, “High-performance confocal system for microscopic or endoscopic applications,” Methods30(1), 16–27 (2003).
[CrossRef] [PubMed]

Rauzi, M.

S. Monneret, M. Rauzi, and P. F. Lenne, “Highly flexible whole-field sectioning microscope with liquid-crystal light modulator,” J. Opt. A, Pure Appl. Opt.8(7), S461–S466 (2006).
[CrossRef]

Rector, D. M.

D. M. Rector, D. M. Ranken, and J. S. George, “High-performance confocal system for microscopic or endoscopic applications,” Methods30(1), 16–27 (2003).
[CrossRef] [PubMed]

Rego, E. H.

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011).
[CrossRef] [PubMed]

Rieger, B.

G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope,” Proc. SPIE6441, 64410S (2007).

Sawano, A.

T. Fukano, A. Sawano, Y. Ohba, M. Matsuda, and A. Miyawaki, “Differential Ras activation between caveolae/raft and non-raft microdomains,” Cell Struct. Funct.32(1), 9–15 (2007).
[CrossRef] [PubMed]

Shao, L.

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011).
[CrossRef] [PubMed]

Siegel, J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

Sucharov, L. O. D.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

Thomas, M.

G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope,” Proc. SPIE6441, 64410S (2007).

van Geest, B.

G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope,” Proc. SPIE6441, 64410S (2007).

vanVliet, L. J.

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. vanVliet, and T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc.189(3), 192–198 (1998).
[CrossRef]

Ventalon, C.

Verbeek, P. W.

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. vanVliet, and T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc.189(3), 192–198 (1998).
[CrossRef]

Verveer, P. J.

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. J. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc.196(3), 317–331 (1999).
[CrossRef] [PubMed]

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. vanVliet, and T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc.189(3), 192–198 (1998).
[CrossRef]

Webb, S. E. D.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

Weng, J.

J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Mach. Intell.14(10), 965–980 (1992).
[CrossRef]

Wicker, K.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009).
[CrossRef] [PubMed]

Wilson, T.

T. Wilson, “Optical sectioning in fluorescence microscopy,” J. Microsc.242(2), 111–116 (2011).
[CrossRef] [PubMed]

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997).
[CrossRef] [PubMed]

Winoto, L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
[CrossRef] [PubMed]

Wolleschensky, R.

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt.11(6), 064011 (2006).
[CrossRef] [PubMed]

Zimmermann, B.

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt.11(6), 064011 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Cell Struct. Funct.

T. Fukano, A. Sawano, Y. Ohba, M. Matsuda, and A. Miyawaki, “Differential Ras activation between caveolae/raft and non-raft microdomains,” Cell Struct. Funct.32(1), 9–15 (2007).
[CrossRef] [PubMed]

Eur. Biophys. J.

L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell.

J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Mach. Intell.14(10), 965–980 (1992).
[CrossRef]

J. Biomed. Opt.

R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt.11(6), 064011 (2006).
[CrossRef] [PubMed]

J. Microsc.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001).
[CrossRef] [PubMed]

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. J. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc.196(3), 317–331 (1999).
[CrossRef] [PubMed]

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. vanVliet, and T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc.189(3), 192–198 (1998).
[CrossRef]

T. Wilson, “Optical sectioning in fluorescence microscopy,” J. Microsc.242(2), 111–116 (2011).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000).
[CrossRef] [PubMed]

R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, and T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc.204(2), 119–135 (2001).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt.

S. Monneret, M. Rauzi, and P. F. Lenne, “Highly flexible whole-field sectioning microscope with liquid-crystal light modulator,” J. Opt. A, Pure Appl. Opt.8(7), S461–S466 (2006).
[CrossRef]

Methods

D. M. Rector, D. M. Ranken, and J. S. George, “High-performance confocal system for microscopic or endoscopic applications,” Methods30(1), 16–27 (2003).
[CrossRef] [PubMed]

Microsc. Res. Tech.

G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. deVries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech.72, 431–440 (2009).
[CrossRef] [PubMed]

Nat. Methods

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009).
[CrossRef] [PubMed]

L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011).
[CrossRef] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photogramm. Eng.

D. C. Brown, “Decentering distortion of lenses,” Photogramm. Eng.32, 444–462 (1966).

Proc. SPIE

G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope,” Proc. SPIE6441, 64410S (2007).

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999).
[CrossRef]

P. A. A. DeBeule, A. H. B. deVries, D. J. Arndt-Jovin, and T. M. Jovin, “Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD),” Proc. SPIE7932(1), 79320G (2011).
[CrossRef]

Other

P. Křížek and G. M. Hagen, “Spatial light modulators in fluorescence microscopy,” in Microscopy: Science, Technology, Applications and Education 4th ed., A. Méndez-Vilas and J. Díaz, eds. (Formatex, 2010), pp. 1366–1377.

D. Armitage, I. Underwood, and S.-T. Wu, Introduction to Microdisplays (John Wiley and Sons, 2006), p. 377.

M. Šonka, V. Hlaváč, and R. Boyle, Image Processing Analysis and Machine Vision 2nd ed. (PWS Publishing, 1998), p. 770.

J. A. Noble, “Descriptions of image surfaces,” (University of Oxford, Oxford, 1989).

R. Heintzmann, “Structured illumination methods,” in Handbook of Biological Confocal Microscopy 3rd ed., J. B. Pawley, ed. (Springer Science + Business Media, 2006), pp. 265–279.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Structured illumination microscope: a) the microscope setup, b) principle of LCOS microdisplay operation.

Fig. 2
Fig. 2

Principle of mapping the illumination pattern from the microdisplay to a camera sensor. The rotation of the microdisplay and barrel distortions in the camera image are greatly exaggerated for clarity. Point x in the microdisplay is detected at point u ^ in the camera. We wish to know the position of any arbitrary microdisplay point in the camera image. To do so, we must determine the projective matrix H, see Eq. (6), and the coefficients of the polynomial modeling the geometric distortions, see Eq. (7).

Fig. 3
Fig. 3

Chessboard calibration image with four orientation markers defining the coordinate system: a) microdisplay image with known positions of corners and markers and b) the raw camera image (100 × /1.45 NA objective; camera is rotated with respect to the display) of the same area with detected corners and markers. Correspondences are indicated by numbers.

Fig. 4
Fig. 4

Example of SIM data used to determine optical sectioning parameters of the system. The illumination pattern was a line grid with MAR = 1/7 (line spacing 981 nm) and line thickness of one microdisplay pixel (diffraction limited in the sample plane). Data were acquired using a 100 × /1.45 NA oil immersion objective, 532 nm laser light source, EMCCD camera, and a Z-increment of 50 nm. Shown are a) processed data and b) data after normalization with the fitted bimodal Gaussian functions.

Fig. 5
Fig. 5

Tunable optical sectioning of the LCOS-based structured illumination microscope for the three examined data processing methods, cf. Equations (3)(5). The top row shows measured FWHM vs. MAR and the bottom row measured offset vs. MAR. The illumination pattern was a line grid with MAR ∈ [0.05, 0.9] and line thickness of one to six microdisplay pixels (163 nm – 1.08 μm in the sample plane). Data were acquired using a 100 × /1.45 NA oil immersion objective, 532 nm laser, EMCCD camera, and a Z-increment of 50 nm. The horizontal dashed lines indicate the measured values for a CLSM with its pinhole set to 1 AU (FWHM = 966 nm, offset = 0.05). and for a spinning disk system (FWHM = 1.632 μm, offset = 0.11).

Fig. 6
Fig. 6

Comparison of scanning patterns and processing methods. Images of a pollen grain were acquired using a 60 × /1.35 NA oil objective, 532 nm laser, EMCCD camera and a Z-increment of 500 nm. The intensity profiles are along the vertical lines in the corresponding XY images.

Fig. 7
Fig. 7

Comparison of different optically sectioning microscopes. The first row shows maximum intensity projections of the acquired images, the second row one optical section, and the third row the intensity profile along the indicated yellow lines. The acquisition parameters were as follows: CLSM − Leica SP5, 63 × /1.4 NA objective, 561 nm laser, XY pixel size 50 nm, pinhole 1AU; Spinning disk − Andor Revolution, Olympus 60 × /1.4 NA objective, Andor Ixon Ultra EMCCD camera, 561 nm laser, XY pixel size 222 nm; SIM − LCOS-based structured illumination, Olympus 60 × /1.35 NA objective, Andor Clara CCD camera, 532 nm laser, XY pixel size 107.5 nm. The Z-increment in all cases was 500 nm. The scanning pattern for SIM was a line grid with MAR = 1/16 and line thickness 272 nm in the sample plane. The SIM images were reconstructed using the scaled subtraction method, cf. Equation (5). The widefield image was computed from the SIM data by averaging the raw images, cf. Equation (2). For comparison, the images were resampled such that they all have a pixel size of 107.5 nm.

Fig. 8
Fig. 8

Comparison of sparse and dense samples in SIM. Top row: Atto-532 labeled actin in a HepG2 cell; MAR = 2/10. Bottom row: 200 nm diameter fluorescent beads; MAR = 1/5. In both cases we used a 532 nm laser for illumination and a 100 × /1.45 NA oil immersion objective. Shown are widefield images, a maximum intensity projection of a single SIM pattern position, an overlaid SIM pattern (green stripes) determined for the calibrated camera, and a maximum intensity projection of the reconstructed data obtained by scaled subtraction.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I c = [ ( I 1 I 2 ) 2 + ( I 1 I 3 ) 2 + ( I 2 I 3 ) 2 ] 1/2 ,
I C1 ( x,y )= max n=1,,N I n ( x,y ) min n=1,,N I n ( x,y ) ,
β= N n=1 N Mas k n on ( x,y ) ( n=1 N Mas k n on ( x,y ) ) 2 N n=1 N ( Mas k n on ( x,y ) ) 2 ( n=1 N Mas k n on ( x,y ) ) 2 ,
α u ˜ =H x ˜ ,
u= u ^ +( u ^ u ^ p ) k=1 K ρ k r 2k ,
[ αu αv α ]=[ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ][ x y 1 ] ,

Metrics