Abstract

We present a new method to address multipolar resonances and to control the scattered field of a spherical scatterer. This method is based on the engineering of the multipolar content of the incident beam. We propose experimentally feasible techniques to generate light beams which contain only a few multipolar modes. The technique uses incident beams with a well defined component of the angular momentum and appropriate focusing with aplanatic lenses. The control of the multipolar content of light beams allow for the excitation of single Mie resonances and unprecedented control of the scattered field from spherical particles.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Gadian, Nuclear Magnetic Resonance and its Applications to Living Systems (Oxford University Press, New York, 1982).
  2. K. Y. Billah and R. H. Scanlan, “Resonance, tacoma narrows bridge failure, and undergraduate physics textbooks,” Am. J. Phys.59, 118–124 (1991).
    [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
    [CrossRef]
  4. R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and J. R. F. Haglund, “Temperature-controlled surface plasmon resonance in vo 2 nanorods,” Opt. Lett.27, 1327–1329 (2002).
    [CrossRef]
  5. N. M. Mojarad, V. Sandoghdar, and M. Agio, “Plasmon spectra of nanospheres under a tightly focused beam,” J. Opt. Soc. Am. B25, 651–658 (2008).
    [CrossRef]
  6. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and G. Wang, “Electrical control of plasmon resonance with graphene,” arXiv:1206.1124v1.
  7. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961).
    [CrossRef]
  8. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
    [CrossRef]
  9. W. Hergert and T. Wriedt, The Mie Theory (Springer, Berlin, 2012).
    [CrossRef]
  10. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, Berlin, 2011).
    [CrossRef]
  11. G. Gouesbet, J. Lock, and G. Gréhan, “Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer112, 1–27 (2011).
    [CrossRef]
  12. M. E. Rose, Multipole Fields (Wiley, New York, 1955).
  13. N. Tischler, X. Zambrana-Puyalto, and G. Molina-Terriza, “The role of angular momentum in the construction of electromagnetic multipolar fields,” Eur. J. Phys.33, 1099–1109 (2012).
    [CrossRef]
  14. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992).
    [CrossRef] [PubMed]
  15. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser & Photon. Rev.2, 299–313 (2008).
    [CrossRef] [PubMed]
  16. V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, 2nd ed. vol. 4(Butterworth-Heinemann, 1982).
  17. I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum. a symmetry based framework for the study of light-matter interactions.” arXiv:1206.5563v1 (2012).
  18. A. S. van de Nes and P. Török, “Rigorous analysis of spheres in Gauss-Laguerre beams,” Opt. Express15, 13360–13374 (2007).
    [CrossRef] [PubMed]
  19. D. Petrov, N. Rahuel, G. Molina-Terriza, and L. Torner, “Characterization of dielectric spheres by spiral imaging,” Opt. Lett.37, 869–871 (2012).
    [CrossRef] [PubMed]
  20. A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express16, 15039–15051 (2008).
    [CrossRef] [PubMed]
  21. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express18, 11428–11443 (2010).
    [CrossRef] [PubMed]
  22. A. Novitsky, C.-W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett.107, 203601 (2011).
    [CrossRef] [PubMed]
  23. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011).
    [CrossRef] [PubMed]
  24. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
    [CrossRef] [PubMed]
  25. A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano6, 837–842 (2012).
    [CrossRef]
  26. D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100, 201113 (2012).
    [CrossRef]
  27. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambdrige, MA, 2006).
    [CrossRef]
  28. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett.88, 013601 (2001).
    [CrossRef]
  29. I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868v1 (2012).
  30. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill and Kogakusha Book Companies, 1953).
  31. G. Molina-Terriza, “Determination of the total angular momentum of a paraxial beam,” Phys. Rev. A78, 053819 (2008).
    [CrossRef]
  32. M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).
  33. W.-K. Tung, Group Theory in Physics (World Scientific, Singapore, 1985).
  34. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  35. J. D. Jackson, Classical Electrodynamics, vol. 2011 (John Wiley & Sons, New York, 1998).
  36. S. Schiller and R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett.16, 1138–1140 (1991).
    [CrossRef] [PubMed]
  37. A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron.32, 377–400 (2002).
    [CrossRef]
  38. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express12, 1214–1220 (2004).
    [CrossRef] [PubMed]
  39. A. Heifetz, S. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci.6, 1979–1992 (2009).
    [CrossRef] [PubMed]

2012 (5)

N. Tischler, X. Zambrana-Puyalto, and G. Molina-Terriza, “The role of angular momentum in the construction of electromagnetic multipolar fields,” Eur. J. Phys.33, 1099–1109 (2012).
[CrossRef]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano6, 837–842 (2012).
[CrossRef]

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100, 201113 (2012).
[CrossRef]

D. Petrov, N. Rahuel, G. Molina-Terriza, and L. Torner, “Characterization of dielectric spheres by spiral imaging,” Opt. Lett.37, 869–871 (2012).
[CrossRef] [PubMed]

2011 (3)

A. Novitsky, C.-W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett.107, 203601 (2011).
[CrossRef] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011).
[CrossRef] [PubMed]

G. Gouesbet, J. Lock, and G. Gréhan, “Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer112, 1–27 (2011).
[CrossRef]

2010 (3)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express18, 11428–11443 (2010).
[CrossRef] [PubMed]

2009 (1)

A. Heifetz, S. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci.6, 1979–1992 (2009).
[CrossRef] [PubMed]

2008 (4)

2007 (1)

2004 (1)

2002 (2)

2001 (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett.88, 013601 (2001).
[CrossRef]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992).
[CrossRef] [PubMed]

1991 (2)

K. Y. Billah and R. H. Scanlan, “Resonance, tacoma narrows bridge failure, and undergraduate physics textbooks,” Am. J. Phys.59, 118–124 (1991).
[CrossRef]

S. Schiller and R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett.16, 1138–1140 (1991).
[CrossRef] [PubMed]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

Agio, M.

Aizpurua, J.

Allen, L.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser & Photon. Rev.2, 299–313 (2008).
[CrossRef] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992).
[CrossRef] [PubMed]

Backman, V.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992).
[CrossRef] [PubMed]

Belov, P. A.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100, 201113 (2012).
[CrossRef]

Berestetskii, V. B.

V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, 2nd ed. vol. 4(Butterworth-Heinemann, 1982).

Billah, K. Y.

K. Y. Billah and R. H. Scanlan, “Resonance, tacoma narrows bridge failure, and undergraduate physics textbooks,” Am. J. Phys.59, 118–124 (1991).
[CrossRef]

Boatner, L. A.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Byer, R. L.

Chantada, L.

Chen, Z.

Cho, D. J.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and G. Wang, “Electrical control of plasmon resonance with graphene,” arXiv:1206.1124v1.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

Feldman, L. C.

Fernandez-Corbaton, I.

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum. a symmetry based framework for the study of light-matter interactions.” arXiv:1206.5563v1 (2012).

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868v1 (2012).

Feshbach, H.

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill and Kogakusha Book Companies, 1953).

Filonov, D. S.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100, 201113 (2012).
[CrossRef]

Franke-Arnold, S.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser & Photon. Rev.2, 299–313 (2008).
[CrossRef] [PubMed]

Froufe-Pérez, L. S.

Fu, Y. H.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Gadian, D. G.

D. G. Gadian, Nuclear Magnetic Resonance and its Applications to Living Systems (Oxford University Press, New York, 1982).

García-Etxarri, A.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Geng, B.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and G. Wang, “Electrical control of plasmon resonance with graphene,” arXiv:1206.1124v1.

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Gómez-Medina, R.

Gouesbet, G.

G. Gouesbet, J. Lock, and G. Gréhan, “Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer112, 1–27 (2011).
[CrossRef]

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, Berlin, 2011).
[CrossRef]

Gréhan, G.

G. Gouesbet, J. Lock, and G. Gréhan, “Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer112, 1–27 (2011).
[CrossRef]

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, Berlin, 2011).
[CrossRef]

Haglund, J. R. F.

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Haynes, T. E.

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambdrige, MA, 2006).
[CrossRef]

Heckenberg, N. R.

Heifetz, A.

A. Heifetz, S. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci.6, 1979–1992 (2009).
[CrossRef] [PubMed]

Hergert, W.

W. Hergert and T. Wriedt, The Mie Theory (Springer, Berlin, 2012).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, vol. 2011 (John Wiley & Sons, New York, 1998).

Juan, M. L.

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868v1 (2012).

Kapitanova, P. V.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100, 201113 (2012).
[CrossRef]

Kim, J.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and G. Wang, “Electrical control of plasmon resonance with graphene,” arXiv:1206.1124v1.

Kim, K.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and G. Wang, “Electrical control of plasmon resonance with graphene,” arXiv:1206.1124v1.

Kivshar, Y. S.

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano6, 837–842 (2012).
[CrossRef]

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100, 201113 (2012).
[CrossRef]

Knöener, G.

Kong, S.

A. Heifetz, S. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci.6, 1979–1992 (2009).
[CrossRef] [PubMed]

Krasnok, A. E.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100, 201113 (2012).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Lifshitz, E. M.

V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, 2nd ed. vol. 4(Butterworth-Heinemann, 1982).

Lock, J.

G. Gouesbet, J. Lock, and G. Gréhan, “Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer112, 1–27 (2011).
[CrossRef]

Lopez, R.

López, C.

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano6, 837–842 (2012).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Maier, S. A.

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano6, 837–842 (2012).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Minovich, A.

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868v1 (2012).

Miroshnichenko, A. E.

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano6, 837–842 (2012).
[CrossRef]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Mojarad, N. M.

Molina-Terriza, G.

D. Petrov, N. Rahuel, G. Molina-Terriza, and L. Torner, “Characterization of dielectric spheres by spiral imaging,” Opt. Lett.37, 869–871 (2012).
[CrossRef] [PubMed]

N. Tischler, X. Zambrana-Puyalto, and G. Molina-Terriza, “The role of angular momentum in the construction of electromagnetic multipolar fields,” Eur. J. Phys.33, 1099–1109 (2012).
[CrossRef]

G. Molina-Terriza, “Determination of the total angular momentum of a paraxial beam,” Phys. Rev. A78, 053819 (2008).
[CrossRef]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett.88, 013601 (2001).
[CrossRef]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum. a symmetry based framework for the study of light-matter interactions.” arXiv:1206.5563v1 (2012).

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868v1 (2012).

Morse, P. M.

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill and Kogakusha Book Companies, 1953).

Nenasheva, E. A.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100, 201113 (2012).
[CrossRef]

Nieminen, T. A.

Nieto-Vesperinas, M.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Novitsky, A.

A. Novitsky, C.-W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett.107, 203601 (2011).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambdrige, MA, 2006).
[CrossRef]

Oraevsky, A. N.

A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron.32, 377–400 (2002).
[CrossRef]

Padgett, M.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser & Photon. Rev.2, 299–313 (2008).
[CrossRef] [PubMed]

Petrov, D.

Pitaevskii, L. P.

V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, 2nd ed. vol. 4(Butterworth-Heinemann, 1982).

Qiu, C.-W.

A. Novitsky, C.-W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett.107, 203601 (2011).
[CrossRef] [PubMed]

Rahuel, N.

Regan, W.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and G. Wang, “Electrical control of plasmon resonance with graphene,” arXiv:1206.1124v1.

Rose, M. E.

M. E. Rose, Multipole Fields (Wiley, New York, 1955).

M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).

Rubinsztein-Dunlop, H.

Sáenz, J. J.

Sahakian, A.

A. Heifetz, S. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci.6, 1979–1992 (2009).
[CrossRef] [PubMed]

Sandoghdar, V.

Scanlan, R. H.

K. Y. Billah and R. H. Scanlan, “Resonance, tacoma narrows bridge failure, and undergraduate physics textbooks,” Am. J. Phys.59, 118–124 (1991).
[CrossRef]

Scheffold, F.

Schiller, S.

Shen, Y.-R.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and G. Wang, “Electrical control of plasmon resonance with graphene,” arXiv:1206.1124v1.

Shi, S.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and G. Wang, “Electrical control of plasmon resonance with graphene,” arXiv:1206.1124v1.

Slobozhanyuk, A. P.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100, 201113 (2012).
[CrossRef]

Son, H.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and G. Wang, “Electrical control of plasmon resonance with graphene,” arXiv:1206.1124v1.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992).
[CrossRef] [PubMed]

Stilgoe, A. B.

Taflove, A.

Tischler, N.

N. Tischler, X. Zambrana-Puyalto, and G. Molina-Terriza, “The role of angular momentum in the construction of electromagnetic multipolar fields,” Eur. J. Phys.33, 1099–1109 (2012).
[CrossRef]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868v1 (2012).

Torner, L.

D. Petrov, N. Rahuel, G. Molina-Terriza, and L. Torner, “Characterization of dielectric spheres by spiral imaging,” Opt. Lett.37, 869–871 (2012).
[CrossRef] [PubMed]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett.88, 013601 (2001).
[CrossRef]

Török, P.

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett.88, 013601 (2001).
[CrossRef]

Tung, W.-K.

W.-K. Tung, Group Theory in Physics (World Scientific, Singapore, 1985).

van de Nes, A. S.

Vidal, X.

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868v1 (2012).

Wang, G.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and G. Wang, “Electrical control of plasmon resonance with graphene,” arXiv:1206.1124v1.

Wang, H.

A. Novitsky, C.-W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett.107, 203601 (2011).
[CrossRef] [PubMed]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992).
[CrossRef] [PubMed]

Wriedt, T.

W. Hergert and T. Wriedt, The Mie Theory (Springer, Berlin, 2012).
[CrossRef]

Zambrana-Puyalto, X.

N. Tischler, X. Zambrana-Puyalto, and G. Molina-Terriza, “The role of angular momentum in the construction of electromagnetic multipolar fields,” Eur. J. Phys.33, 1099–1109 (2012).
[CrossRef]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868v1 (2012).

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum. a symmetry based framework for the study of light-matter interactions.” arXiv:1206.5563v1 (2012).

Zettl, A.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and G. Wang, “Electrical control of plasmon resonance with graphene,” arXiv:1206.1124v1.

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

ACS Nano (1)

A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano6, 837–842 (2012).
[CrossRef]

Am. J. Phys. (1)

K. Y. Billah and R. H. Scanlan, “Resonance, tacoma narrows bridge failure, and undergraduate physics textbooks,” Am. J. Phys.59, 118–124 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100, 201113 (2012).
[CrossRef]

Eur. J. Phys. (1)

N. Tischler, X. Zambrana-Puyalto, and G. Molina-Terriza, “The role of angular momentum in the construction of electromagnetic multipolar fields,” Eur. J. Phys.33, 1099–1109 (2012).
[CrossRef]

J. Comput. Theor. Nanosci. (1)

A. Heifetz, S. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci.6, 1979–1992 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

G. Gouesbet, J. Lock, and G. Gréhan, “Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer112, 1–27 (2011).
[CrossRef]

Laser & Photon. Rev. (1)

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser & Photon. Rev.2, 299–313 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

Phys. Rev. A (2)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992).
[CrossRef] [PubMed]

G. Molina-Terriza, “Determination of the total angular momentum of a paraxial beam,” Phys. Rev. A78, 053819 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett.88, 013601 (2001).
[CrossRef]

A. Novitsky, C.-W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett.107, 203601 (2011).
[CrossRef] [PubMed]

Quantum Electron. (1)

A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron.32, 377–400 (2002).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010).
[CrossRef]

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012).
[CrossRef] [PubMed]

Other (14)

V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, 2nd ed. vol. 4(Butterworth-Heinemann, 1982).

I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum. a symmetry based framework for the study of light-matter interactions.” arXiv:1206.5563v1 (2012).

D. G. Gadian, Nuclear Magnetic Resonance and its Applications to Living Systems (Oxford University Press, New York, 1982).

M. E. Rose, Multipole Fields (Wiley, New York, 1955).

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and G. Wang, “Electrical control of plasmon resonance with graphene,” arXiv:1206.1124v1.

W. Hergert and T. Wriedt, The Mie Theory (Springer, Berlin, 2012).
[CrossRef]

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, Berlin, 2011).
[CrossRef]

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868v1 (2012).

P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill and Kogakusha Book Companies, 1953).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambdrige, MA, 2006).
[CrossRef]

M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).

W.-K. Tung, Group Theory in Physics (World Scientific, Singapore, 1985).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

J. D. Jackson, Classical Electrodynamics, vol. 2011 (John Wiley & Sons, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Multipolar decomposition (|Cjlp|2) for different cases. The insets represent the intensity plots of the modes used for each simulation. The red coloured bars indicate NA=0.25, and the blue ones NA=0.9. The multipolar decomposition of (a) LG0,0 and (b) LG0,3 is presented. Note that Cjlp can be described with very few multipoles when we use a high NA microscope objective to focus the beam.

Fig. 2
Fig. 2

Suppression of background in the scattering efficiency (Qsca). Input beams are a) plane wave and b) LG0,18. In a) no aplanatic lens is used, whereas in b) an aplanatic lens with a NA=0.9 is used. The rest of parameters are kept constant for both plots, i.e. R = 1.3 μm, n r = ε r μ r = 1.5, p = 1. The insets indicate the typical profile of the beam used to excite the sphere. The scattering efficiency is represented with a blue continuous line. The Mie coefficients b20 and a22 are plotted with a red and a green line respectively. In a) we have indicated with a dashed line the position of two particular resonances for these modes. Note that the ordinate axis in a) and b) are different.

Fig. 3
Fig. 3

Effect of a) the input beam and b) the NA of the lens on the excitation of a single resonance in the scattering efficiency (Qsca). In a), three different beams are used: a plane wave and two LG’s beams with l = 4, 8 focused with a lens with NA=0.25. In b) we use a LG0,18 (same as Fig. 2(b)) but we focus it with different NA=0.1, 0.3, 0.5 and 0.9. The beams always fill the entrance pupil of the lens. Note that in a) the ordinate axis is linear and in b) logarithmic. Also, in a) the efficiency produced by each of the LG beams is multiplied by a different factor so that all the curves are comparable in the same plot. In b) the increase of the floor of the plotted lines is not due to an increase of the background, but rather to an amplification of the tails of the resonances.

Fig. 4
Fig. 4

Projection into the helicity basis of the intensity of the interior and total field from a sphere with parameters {R = 1.3 μm, nr = 1.5}. The helicity of the incident beam is always p = 1. The intensity is plotted in logarithmic scale, where 0 corresponds to the maximum of intensity in a). Images a), b), e) and f) have been simulated for a λresonance = 503 nm, whereas a 2 nm shift has been introduced in the off-resonance wavelength for the others, i.e. λoff–resonance = 505 nm. The simulations for the LG0,0 beam have been executed with a NA=0.25 lens in order to be able to excite the resonance of order 20. Note that the scattering is dominated by the off-resonance modes. Calculations with higher numerical apertures give similar results. On the contrary, a lens with a NA=0.9 has been used for the excitation with a LG0,18. In both cases, the entrance pupil of the lens was filled. Note that, in contrast with b), the mode of order 20 is greatly enhanced when we tune the wavelength to the resonance.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A foc ( r ) = C 0 2 π d ϕ k 0 θ M sin θ k d θ k n cos θ k × F l ( f sin θ k ) exp ( i ( l + p ) ϕ k ) M ( θ k , ϕ k ) e p exp ( i k r )
A foc = j = | l + p | i j ( 2 j + 1 ) 1 / 2 C j l p [ A j ( l + p ) ( m ) + i p A j ( l + p ) ( e ) ] C j l p = C 0 θ M sin θ k d θ k d ( l + p ) p j ( θ k ) F l ( f sin θ k ) n cos θ k
Λ A j m z ( m ) = i A j m z ( e ) , Λ A j m z ( e ) = i A j m z ( m )
A sca = j = | l + p | i j ( 2 j + 1 ) 1 / 2 C j l p [ b j A j ( l + p ) ( m ) + i p a j A j ( l + p ) ( e ) ] A 1 = j = | l + p | i j ( 2 j + 1 ) 1 / 2 C j l p [ c j A j ( l + p ) ( m ) + i p d j A j ( l + p ) ( e ) ]
Q sca = j = | l + p | ( 2 j + 1 ) x 2 | C j l p | 2 ( | a j | 2 + | b j | 2 )

Metrics