Abstract

In order to construct flat-top magneto-optical isolators (MOIs), we have performed a theoretical study on the case of transmission-type one-dimensional magnetophotonic crystals (MPCs). We have introduced high performance MPC structures with flat-top responses and with the capability of adjusting to perfect MOIs. The adjustment is carried out by tuning the applied magnetic field. All introduced MOIs are sufficiently thin with acceptable transmission bandwidth. In the best case, we have achieved a 19.42 μm-thick perfect MOI with the flat-top width of 7.2 nm. For practical purposes, we have also considered the influence of the error in thickness of individual layers on the operational parameters of the MOIs and investigated the possibility of compensating the deviations by the magnetic adjustment.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express19, 11740–11745 (2011).
    [CrossRef] [PubMed]
  2. H. Zhu and C. Jiang, “Optical isolation based on nonreciprocal micro-ring resonator,” J. Lightwave Technol.29, 1647–1651 (2011).
    [CrossRef]
  3. Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
    [CrossRef]
  4. A. Alberucci and G. Assanto, “All-optical isolation by directional coupling,” Opt. Lett.33, 1641–1643 (2008).
    [CrossRef] [PubMed]
  5. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A78, 023804 (2008).
    [CrossRef]
  6. Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photon. Nanostruct.: Fundam. Appl.4, 132–140 (2006).
    [CrossRef]
  7. S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express17, 9276–9281 (2009).
    [CrossRef] [PubMed]
  8. T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor waveguide isolators,” J. Lightwave Technol.26, 291–301 (2008).RoelkensG.
    [CrossRef]
  9. S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express20, 1839–1848 (2012).
    [CrossRef] [PubMed]
  10. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
    [CrossRef]
  11. R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
    [CrossRef]
  12. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3, 91–94 (2009).
    [CrossRef]
  13. Z. Yu and S. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron.16, 459–466 (2010).
    [CrossRef]
  14. A. E. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express17, 278–292 (2009).
    [CrossRef] [PubMed]
  15. J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).
  16. H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer,” J. Lightwave Technol.26, 3166–3172 (2008).
    [CrossRef]
  17. Y. Shoji and T. Mizumoto, “Wideband operation of Mach-Zehnder interferometric magneto-optical isolator using phase adjustment,” Opt. Express20, 13446–13450 (2007).
    [CrossRef]
  18. M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Adjustable magneto-optical isolator with high transmittance and large Faraday rotation,” J. Opt. Soc. Am. B28, 2637–2642 (2011).
    [CrossRef]
  19. T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011).
    [CrossRef]
  20. S. M. Hamidi and M. M. Tehranchi, “High transmission enhanced Faraday rotation in coupled resonator magneto-optical waveguides,” J. Lightwave Technol.28, 2139–2145 (2010).
    [CrossRef]
  21. X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
    [CrossRef]
  22. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
    [CrossRef]
  23. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
    [CrossRef]
  24. M. Levy, H. C. Yang, M. J. Steel, and J. Fujita, “Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement,” J. Lightwave Technol.19, 1964–1969 (2001).
    [CrossRef]
  25. M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE. Photon. Technol. Lett.12, 1171–1173 (2000).
    [CrossRef]
  26. Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71, 1243–1255 (2000).
    [CrossRef]
  27. J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990).
    [CrossRef]
  28. M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
    [CrossRef]
  29. F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
    [CrossRef]
  30. S. Visnovsky, Optics in Magnetic Multilayers and Nanostructures (Taylor & Francis Group, 2006).
  31. T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71, 1640–1642 (1997).
    [CrossRef]
  32. T. Uno and S. Nage, “Growth of magneto-optic Ce:YIG thin films on amorphous silica substrates,” J. Europ. Ceramic Soc.21, 1957–1960 (2001).
    [CrossRef]
  33. W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009).
    [CrossRef]
  34. M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt.59, 126–130 (2012).
    [CrossRef]
  35. S. M. Hamidi and M. M. Tehranchi, “Cavity enhanced longitudinal magneto-optical Kerr effect in magneto-plasmonic multilayers consisting of Ce:YIG thin films incorporating gold nanoparticles,” J. Supercond. Nov. Magn.25, 2097–2100 (2012).
    [CrossRef]
  36. T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys.74, 4877–4881 (1993).
    [CrossRef]
  37. M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
    [CrossRef]
  38. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
    [CrossRef]
  39. F. Lopez and E. Bernabeu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films191, 13–19 (1990).
    [CrossRef]
  40. H. Alisafaee and M. Ghanaatshoar, “Optimization of all-garnet magneto-optical magnetic field sensors with genetic algorithm,” Appl. Opt.51, 5144–5148 (2012).
    [CrossRef] [PubMed]
  41. M. Ghanaatshoar, M. Zamani, and H. Alisafaee, “Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance,” Opt. Commun.284, 3635–3638 (2011).
    [CrossRef]
  42. M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci. Mater. Electron.20, S43–S47 (2009).
    [CrossRef]
  43. M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).
  44. V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals” J. Opt. Soc. Am. B22, 286–292 (2005).
    [CrossRef]
  45. S. Kahl and A. M. Grishin, “Magneto-optical rotation of a one-dimensional all-garnet photonic crystal in transmission and reflection,” Phys. Rev. B71, 205110–205114 (2005).
    [CrossRef]
  46. M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012).
    [CrossRef]
  47. Y. P. Wang, D. G. Zhang, H. Zhou, and Z. B. Ouyang, “Error analysis of one-dimensional magneto-photonic crystals used as Faraday rotators,” in Symposium on Photonics and Optoelectronics, 2009. SOPO 2009 (IEEE, 2009), pp. 1–4.
    [CrossRef]
  48. C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express19, 26948–26955 (2011).
    [CrossRef]

2012 (5)

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt.59, 126–130 (2012).
[CrossRef]

S. M. Hamidi and M. M. Tehranchi, “Cavity enhanced longitudinal magneto-optical Kerr effect in magneto-plasmonic multilayers consisting of Ce:YIG thin films incorporating gold nanoparticles,” J. Supercond. Nov. Magn.25, 2097–2100 (2012).
[CrossRef]

M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012).
[CrossRef]

S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express20, 1839–1848 (2012).
[CrossRef] [PubMed]

H. Alisafaee and M. Ghanaatshoar, “Optimization of all-garnet magneto-optical magnetic field sensors with genetic algorithm,” Appl. Opt.51, 5144–5148 (2012).
[CrossRef] [PubMed]

2011 (7)

T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011).
[CrossRef]

M. Ghanaatshoar, M. Zamani, and H. Alisafaee, “Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance,” Opt. Commun.284, 3635–3638 (2011).
[CrossRef]

M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express19, 11740–11745 (2011).
[CrossRef] [PubMed]

H. Zhu and C. Jiang, “Optical isolation based on nonreciprocal micro-ring resonator,” J. Lightwave Technol.29, 1647–1651 (2011).
[CrossRef]

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Adjustable magneto-optical isolator with high transmittance and large Faraday rotation,” J. Opt. Soc. Am. B28, 2637–2642 (2011).
[CrossRef]

C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express19, 26948–26955 (2011).
[CrossRef]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

2010 (3)

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

Z. Yu and S. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron.16, 459–466 (2010).
[CrossRef]

S. M. Hamidi and M. M. Tehranchi, “High transmission enhanced Faraday rotation in coupled resonator magneto-optical waveguides,” J. Lightwave Technol.28, 2139–2145 (2010).
[CrossRef]

2009 (8)

A. E. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express17, 278–292 (2009).
[CrossRef] [PubMed]

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3, 91–94 (2009).
[CrossRef]

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express17, 9276–9281 (2009).
[CrossRef] [PubMed]

W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009).
[CrossRef]

M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci. Mater. Electron.20, S43–S47 (2009).
[CrossRef]

2008 (6)

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor waveguide isolators,” J. Lightwave Technol.26, 291–301 (2008).RoelkensG.
[CrossRef]

A. Alberucci and G. Assanto, “All-optical isolation by directional coupling,” Opt. Lett.33, 1641–1643 (2008).
[CrossRef] [PubMed]

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
[CrossRef]

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A78, 023804 (2008).
[CrossRef]

H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer,” J. Lightwave Technol.26, 3166–3172 (2008).
[CrossRef]

2007 (1)

Y. Shoji and T. Mizumoto, “Wideband operation of Mach-Zehnder interferometric magneto-optical isolator using phase adjustment,” Opt. Express20, 13446–13450 (2007).
[CrossRef]

2006 (1)

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photon. Nanostruct.: Fundam. Appl.4, 132–140 (2006).
[CrossRef]

2005 (3)

V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals” J. Opt. Soc. Am. B22, 286–292 (2005).
[CrossRef]

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

S. Kahl and A. M. Grishin, “Magneto-optical rotation of a one-dimensional all-garnet photonic crystal in transmission and reflection,” Phys. Rev. B71, 205110–205114 (2005).
[CrossRef]

2003 (1)

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

2002 (1)

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

2001 (2)

2000 (2)

M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE. Photon. Technol. Lett.12, 1171–1173 (2000).
[CrossRef]

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71, 1243–1255 (2000).
[CrossRef]

1998 (1)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

1997 (2)

F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
[CrossRef]

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71, 1640–1642 (1997).
[CrossRef]

1993 (1)

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys.74, 4877–4881 (1993).
[CrossRef]

1990 (2)

F. Lopez and E. Bernabeu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films191, 13–19 (1990).
[CrossRef]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990).
[CrossRef]

Alameh, K. E.

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
[CrossRef]

Alberucci, A.

Alisafaee, H.

H. Alisafaee and M. Ghanaatshoar, “Optimization of all-garnet magneto-optical magnetic field sensors with genetic algorithm,” Appl. Opt.51, 5144–5148 (2012).
[CrossRef] [PubMed]

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt.59, 126–130 (2012).
[CrossRef]

M. Ghanaatshoar, M. Zamani, and H. Alisafaee, “Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance,” Opt. Commun.284, 3635–3638 (2011).
[CrossRef]

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Adjustable magneto-optical isolator with high transmittance and large Faraday rotation,” J. Opt. Soc. Am. B28, 2637–2642 (2011).
[CrossRef]

Allen, M.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).

Assanto, G.

Bader, S. D.

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71, 1243–1255 (2000).
[CrossRef]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990).
[CrossRef]

Baets, R.

Bai, C. L.

F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
[CrossRef]

Bao-Jian, W.

W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009).
[CrossRef]

Baryshev, A. V.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Belotelov, V. I.

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
[CrossRef]

V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals” J. Opt. Soc. Am. B22, 286–292 (2005).
[CrossRef]

Bernabeu, E.

F. Lopez and E. Bernabeu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films191, 13–19 (1990).
[CrossRef]

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Bowers, J. E.

Chen, R.

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

Chung, K.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Ding, L.

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Dokukin, M. E.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Drezdzon, S. M.

S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express17, 9276–9281 (2009).
[CrossRef] [PubMed]

Egawa, M.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

Fan, S.

Z. Yu and S. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron.16, 459–466 (2010).
[CrossRef]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3, 91–94 (2009).
[CrossRef]

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photon. Nanostruct.: Fundam. Appl.4, 132–140 (2006).
[CrossRef]

Fen, L.

W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009).
[CrossRef]

Ferrera, M.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Fujita, J.

Gao, L.

T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011).
[CrossRef]

Ghadiri, H.

M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012).
[CrossRef]

Ghanaatshoar, M.

M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012).
[CrossRef]

H. Alisafaee and M. Ghanaatshoar, “Optimization of all-garnet magneto-optical magnetic field sensors with genetic algorithm,” Appl. Opt.51, 5144–5148 (2012).
[CrossRef] [PubMed]

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt.59, 126–130 (2012).
[CrossRef]

M. Ghanaatshoar, M. Zamani, and H. Alisafaee, “Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance,” Opt. Commun.284, 3635–3638 (2011).
[CrossRef]

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Adjustable magneto-optical isolator with high transmittance and large Faraday rotation,” J. Opt. Soc. Am. B28, 2637–2642 (2011).
[CrossRef]

Ghosh, S.

Grishin, A. M.

S. Kahl and A. M. Grishin, “Magneto-optical rotation of a one-dimensional all-garnet photonic crystal in transmission and reflection,” Phys. Rev. B71, 205110–205114 (2005).
[CrossRef]

Guo, X.

Hamidi, S. M.

S. M. Hamidi and M. M. Tehranchi, “Cavity enhanced longitudinal magneto-optical Kerr effect in magneto-plasmonic multilayers consisting of Ce:YIG thin films incorporating gold nanoparticles,” J. Supercond. Nov. Magn.25, 2097–2100 (2012).
[CrossRef]

S. M. Hamidi and M. M. Tehranchi, “High transmission enhanced Faraday rotation in coupled resonator magneto-optical waveguides,” J. Lightwave Technol.28, 2139–2145 (2010).
[CrossRef]

Hao, Y.

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

Harnagea, C.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Hensley, J.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).

Heo, J.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Herzinger, C. M.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Huang, X.

M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci. Mater. Electron.20, S43–S47 (2009).
[CrossRef]

Hwang, J. Y.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Inoue, M.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

Jalali, A. A.

M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci. Mater. Electron.20, S43–S47 (2009).
[CrossRef]

Jiang, C.

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Jiang, X.

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer,” J. Lightwave Technol.26, 3166–3172 (2008).
[CrossRef]

Jiang, Xi.

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

John, S.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A78, 023804 (2008).
[CrossRef]

Johs, B.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

Kahl, S.

S. Kahl and A. M. Grishin, “Magneto-optical rotation of a one-dimensional all-garnet photonic crystal in transmission and reflection,” Phys. Rev. B71, 205110–205114 (2005).
[CrossRef]

Kato, H.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

Keyvavinia, S.

Khanikaev, A. B.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Kim, J.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Kobayashi, M.

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys.74, 4877–4881 (1993).
[CrossRef]

Kotov, V. A.

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
[CrossRef]

Kromer, H.

Levy, M.

M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci. Mater. Electron.20, S43–S47 (2009).
[CrossRef]

M. Levy, H. C. Yang, M. J. Steel, and J. Fujita, “Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement,” J. Lightwave Technol.19, 1964–1969 (2001).
[CrossRef]

M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE. Photon. Technol. Lett.12, 1171–1173 (2000).
[CrossRef]

Li, G.

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

Li, Y.

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

Li, Z. Y.

Lim, P. B.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Linzon, Y.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Liu, C.

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990).
[CrossRef]

Lopez, F.

F. Lopez and E. Bernabeu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films191, 13–19 (1990).
[CrossRef]

Luo, J.

T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011).
[CrossRef]

Matsushita, T.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

McGahan, W. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

Mino, S.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71, 1640–1642 (1997).
[CrossRef]

Mizumoto, T.

Montoya, J.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).

Moog, E. R.

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990).
[CrossRef]

Morandotti, R.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Nage, S.

T. Uno and S. Nage, “Growth of magneto-optic Ce:YIG thin films on amorphous silica substrates,” J. Europ. Ceramic Soc.21, 1957–1960 (2001).
[CrossRef]

Nishimura, K.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

Osgood, R. M.

M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE. Photon. Technol. Lett.12, 1171–1173 (2000).
[CrossRef]

Ouyang, Z. B.

Y. P. Wang, D. G. Zhang, H. Zhou, and Z. B. Ouyang, “Error analysis of one-dimensional magneto-photonic crystals used as Faraday rotators,” in Symposium on Photonics and Optoelectronics, 2009. SOPO 2009 (IEEE, 2009), pp. 1–4.
[CrossRef]

Ozbay, E.

Parameswaran, K.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).

Paulson, W.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

Pignolet, A.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Pintus, P.

Qiu, G.

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

Qiu, Z. Q.

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71, 1243–1255 (2000).
[CrossRef]

Ram, R.

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).

Ram, R. J.

Razzari, L.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Ross, C. A.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Sekhar, M. C.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Serebryannikov, A. E.

Shang, G. Y.

F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
[CrossRef]

Sharifian, M.

M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012).
[CrossRef]

Shintaku, T.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71, 1640–1642 (1997).
[CrossRef]

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys.74, 4877–4881 (1993).
[CrossRef]

Shoji, Y.

Y. Shoji and T. Mizumoto, “Wideband operation of Mach-Zehnder interferometric magneto-optical isolator using phase adjustment,” Opt. Express20, 13446–13450 (2007).
[CrossRef]

Shuo, L.

W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009).
[CrossRef]

Steel, M. J.

M. Levy, H. C. Yang, M. J. Steel, and J. Fujita, “Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement,” J. Lightwave Technol.19, 1964–1969 (2001).
[CrossRef]

M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE. Photon. Technol. Lett.12, 1171–1173 (2000).
[CrossRef]

Sui, Z.

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

Sun, T.

T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011).
[CrossRef]

Sun, Y.

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

Takagi, H.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Takayama, A.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

Takeda, H.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A78, 023804 (2008).
[CrossRef]

Tao, D.

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

Tate, A.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71, 1640–1642 (1997).
[CrossRef]

Tehranchi, M. M.

S. M. Hamidi and M. M. Tehranchi, “Cavity enhanced longitudinal magneto-optical Kerr effect in magneto-plasmonic multilayers consisting of Ce:YIG thin films incorporating gold nanoparticles,” J. Supercond. Nov. Magn.25, 2097–2100 (2012).
[CrossRef]

S. M. Hamidi and M. M. Tehranchi, “High transmission enhanced Faraday rotation in coupled resonator magneto-optical waveguides,” J. Lightwave Technol.28, 2139–2145 (2010).
[CrossRef]

Tian, F.

F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
[CrossRef]

Tien, M. C.

Uchida, H.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

Uno, T.

T. Uno and S. Nage, “Growth of magneto-optic Ce:YIG thin films on amorphous silica substrates,” J. Europ. Ceramic Soc.21, 1957–1960 (2001).
[CrossRef]

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys.74, 4877–4881 (1993).
[CrossRef]

Van Roy, W.

Vasiliev, M.

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
[CrossRef]

Visnovsky, S.

S. Visnovsky, Optics in Magnetic Multilayers and Nanostructures (Taylor & Francis Group, 2006).

Wang, C.

C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express19, 26948–26955 (2011).
[CrossRef]

F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
[CrossRef]

Wang, M.

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer,” J. Lightwave Technol.26, 3166–3172 (2008).
[CrossRef]

Wang, N. X.

F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
[CrossRef]

Wang, Y. P.

Y. P. Wang, D. G. Zhang, H. Zhou, and Z. B. Ouyang, “Error analysis of one-dimensional magneto-photonic crystals used as Faraday rotators,” in Symposium on Photonics and Optoelectronics, 2009. SOPO 2009 (IEEE, 2009), pp. 1–4.
[CrossRef]

Wang, Z.

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photon. Nanostruct.: Fundam. Appl.4, 132–140 (2006).
[CrossRef]

Wei, H.

W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009).
[CrossRef]

Wen, X.

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

Woollam, J. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

Xu, P.

T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011).
[CrossRef]

Yang, H. C.

Yang, J.

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer,” J. Lightwave Technol.26, 3166–3172 (2008).
[CrossRef]

Yang, Ji.

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

Yoshie, T.

S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express17, 9276–9281 (2009).
[CrossRef] [PubMed]

Yu, T.

Yu, Z.

Z. Yu and S. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron.16, 459–466 (2010).
[CrossRef]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3, 91–94 (2009).
[CrossRef]

Zaezjev, M.

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

Zak, J.

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990).
[CrossRef]

Zaman, T. R.

Zamani, M.

M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012).
[CrossRef]

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt.59, 126–130 (2012).
[CrossRef]

M. Ghanaatshoar, M. Zamani, and H. Alisafaee, “Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance,” Opt. Commun.284, 3635–3638 (2011).
[CrossRef]

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Adjustable magneto-optical isolator with high transmittance and large Faraday rotation,” J. Opt. Soc. Am. B28, 2637–2642 (2011).
[CrossRef]

Zhang, D. G.

Y. P. Wang, D. G. Zhang, H. Zhou, and Z. B. Ouyang, “Error analysis of one-dimensional magneto-photonic crystals used as Faraday rotators,” in Symposium on Photonics and Optoelectronics, 2009. SOPO 2009 (IEEE, 2009), pp. 1–4.
[CrossRef]

Zhou, C. Z.

Zhou, H.

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer,” J. Lightwave Technol.26, 3166–3172 (2008).
[CrossRef]

Y. P. Wang, D. G. Zhang, H. Zhou, and Z. B. Ouyang, “Error analysis of one-dimensional magneto-photonic crystals used as Faraday rotators,” in Symposium on Photonics and Optoelectronics, 2009. SOPO 2009 (IEEE, 2009), pp. 1–4.
[CrossRef]

Zhou, Q.

Zhu, H.

Zvezdin, A. K.

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
[CrossRef]

V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals” J. Opt. Soc. Am. B22, 286–292 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71, 1640–1642 (1997).
[CrossRef]

M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Yu and S. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron.16, 459–466 (2010).
[CrossRef]

IEEE Trans. Magn. (1)

M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008).
[CrossRef]

IEEE. Photon. Technol. Lett. (1)

M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE. Photon. Technol. Lett.12, 1171–1173 (2000).
[CrossRef]

J. Appl. Opt. (1)

M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012).
[CrossRef]

J. Appl. Phys. (4)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998).
[CrossRef]

T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys.74, 4877–4881 (1993).
[CrossRef]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990).
[CrossRef]

J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).

J. Europ. Ceramic Soc. (1)

T. Uno and S. Nage, “Growth of magneto-optic Ce:YIG thin films on amorphous silica substrates,” J. Europ. Ceramic Soc.21, 1957–1960 (2001).
[CrossRef]

J. IEEE Trans. Electron. (1)

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).

J. IEEE. Trans. Magn. (1)

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002).
[CrossRef]

J. Lightwave Technol. (5)

J. Mater. Sci. Mater. Electron. (1)

M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci. Mater. Electron.20, S43–S47 (2009).
[CrossRef]

J. Mod. Opt. (1)

M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt.59, 126–130 (2012).
[CrossRef]

J. Opt. (1)

Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Supercond. Nov. Magn. (1)

S. M. Hamidi and M. M. Tehranchi, “Cavity enhanced longitudinal magneto-optical Kerr effect in magneto-plasmonic multilayers consisting of Ce:YIG thin films incorporating gold nanoparticles,” J. Supercond. Nov. Magn.25, 2097–2100 (2012).
[CrossRef]

J. Vac. Sci. Technol. B (1)

F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997).
[CrossRef]

Nat. Photonics (2)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3, 91–94 (2009).
[CrossRef]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011).
[CrossRef]

Opt. Express (1)

S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express17, 9276–9281 (2009).
[CrossRef] [PubMed]

Opt. Commun. (3)

R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009).
[CrossRef]

M. Ghanaatshoar, M. Zamani, and H. Alisafaee, “Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance,” Opt. Commun.284, 3635–3638 (2011).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Optoelectron. Lett. (1)

W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009).
[CrossRef]

Photon. Nanostruct.: Fundam. Appl. (1)

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photon. Nanostruct.: Fundam. Appl.4, 132–140 (2006).
[CrossRef]

Phys. Lett. A (1)

T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011).
[CrossRef]

Phys. Rev. A (1)

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A78, 023804 (2008).
[CrossRef]

Phys. Rev. B (1)

S. Kahl and A. M. Grishin, “Magneto-optical rotation of a one-dimensional all-garnet photonic crystal in transmission and reflection,” Phys. Rev. B71, 205110–205114 (2005).
[CrossRef]

Proc. SPIE (1)

X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71, 1243–1255 (2000).
[CrossRef]

Thin Solid Films (1)

F. Lopez and E. Bernabeu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films191, 13–19 (1990).
[CrossRef]

Other (2)

Y. P. Wang, D. G. Zhang, H. Zhou, and Z. B. Ouyang, “Error analysis of one-dimensional magneto-photonic crystals used as Faraday rotators,” in Symposium on Photonics and Optoelectronics, 2009. SOPO 2009 (IEEE, 2009), pp. 1–4.
[CrossRef]

S. Visnovsky, Optics in Magnetic Multilayers and Nanostructures (Taylor & Francis Group, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The magneto-optical spectra of the structure S 1 ( 1 ) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S 1 ( 1 ) as functions of ϕ.

Fig. 2
Fig. 2

The transmittance and Faraday rotation absolute value of the adjustable MOIs (a) S 2 ( 1 ) and (b) S 3 ( 1 ) as functions of wavelength.

Fig. 3
Fig. 3

The magneto-optical spectra of the structure S 1 ( 2 ) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S 1 ( 2 ) as functions of ϕ.

Fig. 4
Fig. 4

The magneto-optical spectra of the structure S 2 ( 2 ) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S 2 ( 2 ) as functions of ϕ.

Fig. 5
Fig. 5

The magneto-optical spectra of the structure S 1 ( 3 ) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S 1 ( 3 ) as functions of ϕ.

Fig. 6
Fig. 6

The magneto-optical spectra of the structure S 1 ( 4 ) (a) before and (c) after adjusting to a perfect MOI as functions of wavelength. (b) The transmittance, ellipticity, and Faraday rotation absolute value of the structure S 1 ( 4 ) as functions of ϕ.

Fig. 7
Fig. 7

The transmittance, Faraday rotation and ellipticity spectra of the MOI S 1 ( 4 ) in the presence of a set of (a) 0.2 nm and (b) 1 nm surface roughness errors as functions of wavelength.

Tables (1)

Tables Icon

Table 1 Characteristics of the adjustable MOIs.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A a P a = A 1 D 1 P 1 = A 1 D 1 A 1 1 A 1 P 1 = A 1 D 1 A 1 1 A 2 D 2 P 2 = i = 1 m ( A i D i A i 1 ) A s P s .
A = ( 1 0 1 0 γ y ( β y 1 + α z 2 α y α z β z ) α z γ y ( β y 1 + α z 2 α y α z + β z ) α z γ ( α y β y + α z β z ) n γ ( α y β y + α z β z ) n n α z γ ( β y α y α z + β z ) n α z γ ( β y α y α z β z ) ) ,
D = ( U cos δ ( i ) U sin δ ( i ) 0 0 U sin δ ( i ) U cos δ ( i ) 0 0 0 0 U 1 cos δ ( r ) U 1 sin δ ( r ) 0 0 U 1 sin δ ( r ) U 1 cos δ ( r ) ) ,
P a = A a 1 i = 1 m ( A i D i A i 1 ) A s P s ( G H I J ) P s ,
( t s s t s p t p s t p p ) = G 1 , ( r ss r s p r p s r p p ) = I G 1 .
ε M = ( ε 1 i ε 2 0 i ε 2 ε 1 0 0 0 ε 1 ) ,
ε M = ( ε 1 i ε 2 x y i ε 2 x z i ε 2 x y ε 1 0 i ε 2 x z 0 ε 1 ) ,
R T = T max T min T max + T min and R F = θ max θ min θ max + θ min ,

Metrics