Abstract

In this paper, we report on the low energy-density recording with a high-repetition-rate femtosecond pulsed beam in homogenous gold-nanorod-dispersed discs by using low numerical aperture (NA) micro-optics. By focusing a femtosecond pulsed beam at a repetition rate of 82 MHz using a low NA DVD optical head, the spatially-stretched energy density introduces a temperature rising of the polymer matrix. This temperature rising facilitates the surface melting of gold nanorods, which leads to over one-order-of-magnitude reduction in the energy-density threshold for recording, compared with that by focusing single pulses through a high NA objective. Applying this finding, we demonstrate the dual-layer recording in gold-nanorod-dispersed discs with an equivalent capacity of 69 GB. Our results demonstrate the potential of ultra-high density three-dimensional optical memory with a low-cost and DVD-compatible apparatus.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005).
    [CrossRef] [PubMed]
  2. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
    [CrossRef] [PubMed]
  3. J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3866–3871 (2008).
    [CrossRef]
  4. J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007).
    [CrossRef]
  5. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  6. H. Ditlbacher, B. Lamprecht, A. Leitner, F. R. Aussenegg, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett.25(8), 563–565 (2000).
    [CrossRef] [PubMed]
  7. X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat Commun3, 998 (2012).
    [CrossRef] [PubMed]
  8. L. Au, J. Chen, L. V. Wang, and Y. Xia, “Gold nanocages for cancer imaging and therapy,” Methods Mol. Biol.624, 83–99 (2010).
    [CrossRef] [PubMed]
  9. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir15(3), 701–709 (1999).
    [CrossRef]
  10. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
    [CrossRef]
  11. S. Link and M. A. El-Sayed, “Spectroscopic determination of the melting energy of a gold nanorod,” J. Chem. Phys.114(5), 2362–2368 (2001).
    [CrossRef]
  12. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Review B - Condens Matter and Mater Phys.53(4), 1749–1761 (1996).
    [CrossRef]
  13. S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
    [CrossRef]
  14. H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: Comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys.8(7), 814–821 (2006).
    [CrossRef] [PubMed]
  15. M. Gu, Advanced optical imaging theory (Springer, 2000).
  16. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
    [CrossRef] [PubMed]
  17. A. Bejan, Heat transfer (John Wiley & Sons, 1993).
  18. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  19. P. Zijlstra, J. W. M. Chon, and M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express15(19), 12151–12160 (2007).
    [CrossRef] [PubMed]
  20. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
    [CrossRef]
  21. W. D. Kingery, “Heat-Conductivity Processes in Glass,” J. Am. Ceram. Soc.44(7), 302–304 (1961).
    [CrossRef]
  22. G. V. Hartland, M. Hu, and J. E. Sader, “Softening of the symmetric breathing mode in gold particles by laser-induced heating,” J. Phys. Chem. B107(30), 7472–7478 (2003).
    [CrossRef]
  23. A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, “A surface phase transition of supported gold nanoparticles,” Nano Lett.7(4), 1026–1031 (2007).
    [CrossRef] [PubMed]
  24. B. Zhang, J. Ma, L. Pan, X. Cheng, and Y. Tang, “High performance three-axis actuator in super-multi optical pickup with low crosstalk force,” IEEE Trans. Consum. Electron.54(4), 1743–1749 (2008).
    [CrossRef]
  25. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
    [CrossRef]
  26. T. Nishino, S. Kani, K. Gotoh, and K. Nakamae, “Melt processing of poly(vinyl alcohol) through blending with sugar pendant polymer,” Polymer (Guildf.)43(9), 2869–2873 (2002).
    [CrossRef]

2012 (1)

X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat Commun3, 998 (2012).
[CrossRef] [PubMed]

2010 (1)

L. Au, J. Chen, L. V. Wang, and Y. Xia, “Gold nanocages for cancer imaging and therapy,” Methods Mol. Biol.624, 83–99 (2010).
[CrossRef] [PubMed]

2009 (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

2008 (2)

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3866–3871 (2008).
[CrossRef]

B. Zhang, J. Ma, L. Pan, X. Cheng, and Y. Tang, “High performance three-axis actuator in super-multi optical pickup with low crosstalk force,” IEEE Trans. Consum. Electron.54(4), 1743–1749 (2008).
[CrossRef]

2007 (3)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express15(19), 12151–12160 (2007).
[CrossRef] [PubMed]

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, “A surface phase transition of supported gold nanoparticles,” Nano Lett.7(4), 1026–1031 (2007).
[CrossRef] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007).
[CrossRef]

2006 (3)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: Comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys.8(7), 814–821 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

2005 (2)

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005).
[CrossRef] [PubMed]

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005).
[CrossRef] [PubMed]

2003 (2)

G. V. Hartland, M. Hu, and J. E. Sader, “Softening of the symmetric breathing mode in gold particles by laser-induced heating,” J. Phys. Chem. B107(30), 7472–7478 (2003).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

2002 (1)

T. Nishino, S. Kani, K. Gotoh, and K. Nakamae, “Melt processing of poly(vinyl alcohol) through blending with sugar pendant polymer,” Polymer (Guildf.)43(9), 2869–2873 (2002).
[CrossRef]

2001 (1)

S. Link and M. A. El-Sayed, “Spectroscopic determination of the melting energy of a gold nanorod,” J. Chem. Phys.114(5), 2362–2368 (2001).
[CrossRef]

2000 (3)

H. Ditlbacher, B. Lamprecht, A. Leitner, F. R. Aussenegg, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett.25(8), 563–565 (2000).
[CrossRef] [PubMed]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

1999 (2)

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir15(3), 701–709 (1999).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Review B - Condens Matter and Mater Phys.53(4), 1749–1761 (1996).
[CrossRef]

1961 (1)

W. D. Kingery, “Heat-Conductivity Processes in Glass,” J. Am. Ceram. Soc.44(7), 302–304 (1961).
[CrossRef]

Alivisatos, A. P.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005).
[CrossRef] [PubMed]

Arai, A. Y.

Au, L.

L. Au, J. Chen, L. V. Wang, and Y. Xia, “Gold nanocages for cancer imaging and therapy,” Methods Mol. Biol.624, 83–99 (2010).
[CrossRef] [PubMed]

Aussenegg, F. R.

Bartels, A.

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, “A surface phase transition of supported gold nanoparticles,” Nano Lett.7(4), 1026–1031 (2007).
[CrossRef] [PubMed]

Bovatsek, J.

Bullen, C.

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007).
[CrossRef]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

Cerna, R.

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, “A surface phase transition of supported gold nanoparticles,” Nano Lett.7(4), 1026–1031 (2007).
[CrossRef] [PubMed]

Chang, S. S.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir15(3), 701–709 (1999).
[CrossRef]

Chen, C. D.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir15(3), 701–709 (1999).
[CrossRef]

Chen, J.

L. Au, J. Chen, L. V. Wang, and Y. Xia, “Gold nanocages for cancer imaging and therapy,” Methods Mol. Biol.624, 83–99 (2010).
[CrossRef] [PubMed]

Cheng, X.

B. Zhang, J. Ma, L. Pan, X. Cheng, and Y. Tang, “High performance three-axis actuator in super-multi optical pickup with low crosstalk force,” IEEE Trans. Consum. Electron.54(4), 1743–1749 (2008).
[CrossRef]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express15(19), 12151–12160 (2007).
[CrossRef] [PubMed]

Day, D.

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3866–3871 (2008).
[CrossRef]

Dekorsy, T.

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, “A surface phase transition of supported gold nanoparticles,” Nano Lett.7(4), 1026–1031 (2007).
[CrossRef] [PubMed]

Ditlbacher, H.

Eaton, S. M.

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

S. Link and M. A. El-Sayed, “Spectroscopic determination of the melting energy of a gold nanorod,” J. Chem. Phys.114(5), 2362–2368 (2001).
[CrossRef]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Review B - Condens Matter and Mater Phys.53(4), 1749–1761 (1996).
[CrossRef]

Gotoh, K.

T. Nishino, S. Kani, K. Gotoh, and K. Nakamae, “Melt processing of poly(vinyl alcohol) through blending with sugar pendant polymer,” Polymer (Guildf.)43(9), 2869–2873 (2002).
[CrossRef]

Gu, M.

X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat Commun3, 998 (2012).
[CrossRef] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3866–3871 (2008).
[CrossRef]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express15(19), 12151–12160 (2007).
[CrossRef] [PubMed]

Hartland, G. V.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: Comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys.8(7), 814–821 (2006).
[CrossRef] [PubMed]

G. V. Hartland, M. Hu, and J. E. Sader, “Softening of the symmetric breathing mode in gold particles by laser-induced heating,” J. Phys. Chem. B107(30), 7472–7478 (2003).
[CrossRef]

Herman, P. R.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Review B - Condens Matter and Mater Phys.53(4), 1749–1761 (1996).
[CrossRef]

Hu, M.

G. V. Hartland, M. Hu, and J. E. Sader, “Softening of the symmetric breathing mode in gold particles by laser-induced heating,” J. Phys. Chem. B107(30), 7472–7478 (2003).
[CrossRef]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Hudert, F.

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, “A surface phase transition of supported gold nanoparticles,” Nano Lett.7(4), 1026–1031 (2007).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Kani, S.

T. Nishino, S. Kani, K. Gotoh, and K. Nakamae, “Melt processing of poly(vinyl alcohol) through blending with sugar pendant polymer,” Polymer (Guildf.)43(9), 2869–2873 (2002).
[CrossRef]

Kingery, W. D.

W. D. Kingery, “Heat-Conductivity Processes in Glass,” J. Am. Ceram. Soc.44(7), 302–304 (1961).
[CrossRef]

Kotaidis, V.

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, “A surface phase transition of supported gold nanoparticles,” Nano Lett.7(4), 1026–1031 (2007).
[CrossRef] [PubMed]

Lai, W. C.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir15(3), 701–709 (1999).
[CrossRef]

Lamprecht, B.

Lan, T. H.

X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat Commun3, 998 (2012).
[CrossRef] [PubMed]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Leitner, A.

Li, J. L.

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3866–3871 (2008).
[CrossRef]

Li, X.

X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat Commun3, 998 (2012).
[CrossRef] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Spectroscopic determination of the melting energy of a gold nanorod,” J. Chem. Phys.114(5), 2362–2368 (2001).
[CrossRef]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

Liphardt, J.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005).
[CrossRef] [PubMed]

Liz-Marzán, L. M.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: Comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys.8(7), 814–821 (2006).
[CrossRef] [PubMed]

Ma, J.

B. Zhang, J. Ma, L. Pan, X. Cheng, and Y. Tang, “High performance three-axis actuator in super-multi optical pickup with low crosstalk force,” IEEE Trans. Consum. Electron.54(4), 1743–1749 (2008).
[CrossRef]

Mohamed, M. B.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

Mulvaney, P.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: Comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys.8(7), 814–821 (2006).
[CrossRef] [PubMed]

Nakamae, K.

T. Nishino, S. Kani, K. Gotoh, and K. Nakamae, “Melt processing of poly(vinyl alcohol) through blending with sugar pendant polymer,” Polymer (Guildf.)43(9), 2869–2873 (2002).
[CrossRef]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

Nishino, T.

T. Nishino, S. Kani, K. Gotoh, and K. Nakamae, “Melt processing of poly(vinyl alcohol) through blending with sugar pendant polymer,” Polymer (Guildf.)43(9), 2869–2873 (2002).
[CrossRef]

Pan, L.

B. Zhang, J. Ma, L. Pan, X. Cheng, and Y. Tang, “High performance three-axis actuator in super-multi optical pickup with low crosstalk force,” IEEE Trans. Consum. Electron.54(4), 1743–1749 (2008).
[CrossRef]

Pastoriza-Santos, I.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: Comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys.8(7), 814–821 (2006).
[CrossRef] [PubMed]

Perez Juste, J.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: Comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys.8(7), 814–821 (2006).
[CrossRef] [PubMed]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Review B - Condens Matter and Mater Phys.53(4), 1749–1761 (1996).
[CrossRef]

Petrova, H.

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: Comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys.8(7), 814–821 (2006).
[CrossRef] [PubMed]

Plech, A.

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, “A surface phase transition of supported gold nanoparticles,” Nano Lett.7(4), 1026–1031 (2007).
[CrossRef] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Reinhard, B. M.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005).
[CrossRef] [PubMed]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Review B - Condens Matter and Mater Phys.53(4), 1749–1761 (1996).
[CrossRef]

Sader, J. E.

G. V. Hartland, M. Hu, and J. E. Sader, “Softening of the symmetric breathing mode in gold particles by laser-induced heating,” J. Phys. Chem. B107(30), 7472–7478 (2003).
[CrossRef]

Shah, L.

Shih, C. W.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir15(3), 701–709 (1999).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Review B - Condens Matter and Mater Phys.53(4), 1749–1761 (1996).
[CrossRef]

Sönnichsen, C.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005).
[CrossRef] [PubMed]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Review B - Condens Matter and Mater Phys.53(4), 1749–1761 (1996).
[CrossRef]

Tang, Y.

B. Zhang, J. Ma, L. Pan, X. Cheng, and Y. Tang, “High performance three-axis actuator in super-multi optical pickup with low crosstalk force,” IEEE Trans. Consum. Electron.54(4), 1743–1749 (2008).
[CrossRef]

Tien, C. H.

X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat Commun3, 998 (2012).
[CrossRef] [PubMed]

Wang, C. R. C.

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir15(3), 701–709 (1999).
[CrossRef]

Wang, L. V.

L. Au, J. Chen, L. V. Wang, and Y. Xia, “Gold nanocages for cancer imaging and therapy,” Methods Mol. Biol.624, 83–99 (2010).
[CrossRef] [PubMed]

Wang, Z. L.

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

Xia, Y.

L. Au, J. Chen, L. V. Wang, and Y. Xia, “Gold nanocages for cancer imaging and therapy,” Methods Mol. Biol.624, 83–99 (2010).
[CrossRef] [PubMed]

Yoshino, F.

Zhang, B.

B. Zhang, J. Ma, L. Pan, X. Cheng, and Y. Tang, “High performance three-axis actuator in super-multi optical pickup with low crosstalk force,” IEEE Trans. Consum. Electron.54(4), 1743–1749 (2008).
[CrossRef]

Zhang, H.

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express15(19), 12151–12160 (2007).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3866–3871 (2008).
[CrossRef]

Chem. Mater. (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003).
[CrossRef]

IEEE Trans. Consum. Electron. (1)

B. Zhang, J. Ma, L. Pan, X. Cheng, and Y. Tang, “High performance three-axis actuator in super-multi optical pickup with low crosstalk force,” IEEE Trans. Consum. Electron.54(4), 1743–1749 (2008).
[CrossRef]

J. Am. Ceram. Soc. (1)

W. D. Kingery, “Heat-Conductivity Processes in Glass,” J. Am. Ceram. Soc.44(7), 302–304 (1961).
[CrossRef]

J. Am. Chem. Soc. (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

S. Link and M. A. El-Sayed, “Spectroscopic determination of the melting energy of a gold nanorod,” J. Chem. Phys.114(5), 2362–2368 (2001).
[CrossRef]

J. Phys. Chem. A (1)

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999).
[CrossRef]

J. Phys. Chem. B (4)

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000).
[CrossRef]

G. V. Hartland, M. Hu, and J. E. Sader, “Softening of the symmetric breathing mode in gold particles by laser-induced heating,” J. Phys. Chem. B107(30), 7472–7478 (2003).
[CrossRef]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000).
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Langmuir (1)

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir15(3), 701–709 (1999).
[CrossRef]

Methods Mol. Biol. (1)

L. Au, J. Chen, L. V. Wang, and Y. Xia, “Gold nanocages for cancer imaging and therapy,” Methods Mol. Biol.624, 83–99 (2010).
[CrossRef] [PubMed]

Nano Lett. (1)

A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, “A surface phase transition of supported gold nanoparticles,” Nano Lett.7(4), 1026–1031 (2007).
[CrossRef] [PubMed]

Nat Commun (1)

X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat Commun3, 998 (2012).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005).
[CrossRef] [PubMed]

Nature (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: Comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys.8(7), 814–821 (2006).
[CrossRef] [PubMed]

Phys. Review B - Condens Matter and Mater Phys. (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Review B - Condens Matter and Mater Phys.53(4), 1749–1761 (1996).
[CrossRef]

Polymer (Guildf.) (1)

T. Nishino, S. Kani, K. Gotoh, and K. Nakamae, “Melt processing of poly(vinyl alcohol) through blending with sugar pendant polymer,” Polymer (Guildf.)43(9), 2869–2873 (2002).
[CrossRef]

Other (2)

M. Gu, Advanced optical imaging theory (Springer, 2000).

A. Bejan, Heat transfer (John Wiley & Sons, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Calculated focal energy-density distribution in the lateral direction for objectives of NA = 1.4 (red) and NA = 0.6 (blue) (the latter is magnified by 31 times in the plot). (b) Calculated focal temperature as a function of the number of pulses at a repetition rate of 82 MHz and an energy density of 0.4mJcm−2. The blue squares and red circles present the calculated temperature rising in gold-nanorod-dispersed PVA matrix by objectives with NA = 0.6 and NA = 1.4, respectively. The green triangles represent data for gold nanorods distributed on cover glass. (c) Experimental characterization of the 2P fluorescence contrast reduction as a function of the energy density by surface melting of gold nanorods in the PVA matrix with an objective NA = 0.6 (blue), in the PVA matrix with an objective NA = 1.4 (red) and distributed on cover glass with an objective NA = 0.6 (green), respectively. (d) The focal temperature of the PVA matrix after 2000 pulses at different energy-density levels and laser repetition rates.

Fig. 2
Fig. 2

Experimental configuration of the recording system.

Fig. 3
Fig. 3

(a) Axial resolution and (b) lateral resolution of the DVD optical head as a function of the wavelength. (c) Fluorescence readout image of the recorded pattern at different recording power levels. The scale bar is 10 μm. (d) Size defined by the FWHM and (e) the readout contrast of the recorded bits as a function of the recording power and the exposure time.

Fig. 4
Fig. 4

2P fluorescence readout images of two letters recorded in the first layer (a) and the second layer (b). The inset shows the zoom in view of the recorded bits indicated by the dashed square. The scale bar is 10 μm. (c) the axial response of the two recorded layers with a layer separation of 15 μm. (d) the cross section plot of the recorded bits as indicated by the dashed line.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T(r,t)= n=1 m F( r o )a 8k ( k ρ c p ) 1 2 (πnt) 3 2 exp( (r r o ) 2 4 k ρ c p nt ).

Metrics