Abstract

We demonstrate low-loss splicing between a photonic crystal fiber (PCF) and a single-mode fiber (SMF) with a conventional electric-arc fusion splicer, where nitrogen gas (N2) with a proper pressure is pumped into the air holes of the PCF to control the air-hole collapse ratio so as to optimize the mode-field match at the joint. The method is applicable to both solid-core and hollow-core PCFs. With this method, we achieve a splice loss (measured at 1550 nm) of ~0.40 dB for a solid-core PCF and ~1.05 dB for a hollow-core PCF. The method could find wide applications in the fabrication of PCF-based devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006).
    [CrossRef]
  2. T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett.22(13), 961–963 (1997).
    [CrossRef] [PubMed]
  3. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,’,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000).
    [CrossRef]
  4. J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000).
    [CrossRef] [PubMed]
  6. P. J. Bennett, T. M. Monro, and D. J. Richardson, “Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization,” Opt. Lett.24(17), 1203–1205 (1999).
    [CrossRef] [PubMed]
  7. M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
    [CrossRef]
  8. J. T. Lizier and G. E. Town, “Splice losses in holey optical fiber,” IEEE Photon. Technol. Lett.13(3), 466–467 (2001).
  9. J. H. Chong and M. K. Rao, “Development of a system for laser splicing photonic crystal fiber,” Opt. Express11(12), 1365–1370 (2003).
    [CrossRef] [PubMed]
  10. A. D. Yablon and R. T. Bise, “Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses,” IEEE Photon. Technol. Lett.17(1), 118–120 (2005).
    [CrossRef]
  11. B. Bourliaguet, C. Paré, F. Emond, A. Croteau, A. Proulx, and R. Vallée, “Microstructured fiber splicing,” Opt. Express11(25), 3412–3417 (2003).
    [PubMed]
  12. R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Opt. Express14(21), 9576–9583 (2006).
    [CrossRef] [PubMed]
  13. L. M. Xiao, M. S. Demokan, W. Jin, Y. P. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol.25(11), 3563–3574 (2007).
    [CrossRef]
  14. J. T. Kristensen, A. Houmann, X. M. Liu, and D. Turchinovich, “Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression,” Opt. Express16(13), 9986–9995 (2008).
    [CrossRef] [PubMed]
  15. G. Fu, W. Jin, X. Fu, and W. Bi, “Air-holes collapse properties of photonic crystal fiber in heating process by CO2 laser,” IEEE Photon. Jour.4(3), 1028–1034 (2012).
    [CrossRef]
  16. A. Ishikura, Y. Kato, T. Ooyanagi, and M. Myauchi, “Loss factors analysis for single-mode fiber splicing without core axis alignment,” J. Lightwave Technol.7(4), 577–583 (1989).
    [CrossRef]
  17. L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single mode fibers by repeated arc discharges,” Opt. Lett.32(2), 115–117 (2007).
    [CrossRef] [PubMed]
  18. J. Lægsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun.237(4-6), 431–435 (2004).
    [CrossRef]
  19. J. Ju, W. Jin, Y. L. Hoo, and M. S. Demokan, “A simple method for estimating the splice loss of photonic-crystal fiber/single-mode fiber,” Microw. Opt. Technol. Lett.42(2), 171–173 (2004).
    [CrossRef]
  20. Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun.282(23), 4527–4531 (2009).
    [CrossRef]
  21. G. E. Town and J. T. Lizier, “Tapered holey fibers for spot-size and numerical-aperture conversion,” Opt. Lett.26(14), 1042–1044 (2001).
    [CrossRef] [PubMed]
  22. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
    [CrossRef] [PubMed]

2012 (1)

G. Fu, W. Jin, X. Fu, and W. Bi, “Air-holes collapse properties of photonic crystal fiber in heating process by CO2 laser,” IEEE Photon. Jour.4(3), 1028–1034 (2012).
[CrossRef]

2009 (2)

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun.282(23), 4527–4531 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (2)

2005 (2)

A. D. Yablon and R. T. Bise, “Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses,” IEEE Photon. Technol. Lett.17(1), 118–120 (2005).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

2004 (2)

J. Lægsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun.237(4-6), 431–435 (2004).
[CrossRef]

J. Ju, W. Jin, Y. L. Hoo, and M. S. Demokan, “A simple method for estimating the splice loss of photonic-crystal fiber/single-mode fiber,” Microw. Opt. Technol. Lett.42(2), 171–173 (2004).
[CrossRef]

2003 (3)

2001 (2)

J. T. Lizier and G. E. Town, “Splice losses in holey optical fiber,” IEEE Photon. Technol. Lett.13(3), 466–467 (2001).

G. E. Town and J. T. Lizier, “Tapered holey fibers for spot-size and numerical-aperture conversion,” Opt. Lett.26(14), 1042–1044 (2001).
[CrossRef] [PubMed]

2000 (2)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,’,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000).
[CrossRef] [PubMed]

1999 (1)

1997 (1)

1989 (1)

A. Ishikura, Y. Kato, T. Ooyanagi, and M. Myauchi, “Loss factors analysis for single-mode fiber splicing without core axis alignment,” J. Lightwave Technol.7(4), 577–583 (1989).
[CrossRef]

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,’,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000).
[CrossRef]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000).
[CrossRef] [PubMed]

Benabid, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Bennett, P. J.

Bi, W.

G. Fu, W. Jin, X. Fu, and W. Bi, “Air-holes collapse properties of photonic crystal fiber in heating process by CO2 laser,” IEEE Photon. Jour.4(3), 1028–1034 (2012).
[CrossRef]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,’,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000).
[CrossRef]

T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett.22(13), 961–963 (1997).
[CrossRef] [PubMed]

Bise, R. T.

A. D. Yablon and R. T. Bise, “Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses,” IEEE Photon. Technol. Lett.17(1), 118–120 (2005).
[CrossRef]

Bjarklev, A.

J. Lægsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun.237(4-6), 431–435 (2004).
[CrossRef]

Bourliaguet, B.

Chong, J. H.

Corwin, K. L.

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Croteau, A.

Demokan, M. S.

Dong, L.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Duan, K.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun.282(23), 4527–4531 (2009).
[CrossRef]

Emond, F.

Fu, G.

G. Fu, W. Jin, X. Fu, and W. Bi, “Air-holes collapse properties of photonic crystal fiber in heating process by CO2 laser,” IEEE Photon. Jour.4(3), 1028–1034 (2012).
[CrossRef]

Fu, L. B.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Fu, X.

G. Fu, W. Jin, X. Fu, and W. Bi, “Air-holes collapse properties of photonic crystal fiber in heating process by CO2 laser,” IEEE Photon. Jour.4(3), 1028–1034 (2012).
[CrossRef]

Hoo, Y. L.

J. Ju, W. Jin, Y. L. Hoo, and M. S. Demokan, “A simple method for estimating the splice loss of photonic-crystal fiber/single-mode fiber,” Microw. Opt. Technol. Lett.42(2), 171–173 (2004).
[CrossRef]

Houmann, A.

Ishikura, A.

A. Ishikura, Y. Kato, T. Ooyanagi, and M. Myauchi, “Loss factors analysis for single-mode fiber splicing without core axis alignment,” J. Lightwave Technol.7(4), 577–583 (1989).
[CrossRef]

Jin, W.

G. Fu, W. Jin, X. Fu, and W. Bi, “Air-holes collapse properties of photonic crystal fiber in heating process by CO2 laser,” IEEE Photon. Jour.4(3), 1028–1034 (2012).
[CrossRef]

L. M. Xiao, M. S. Demokan, W. Jin, Y. P. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol.25(11), 3563–3574 (2007).
[CrossRef]

L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single mode fibers by repeated arc discharges,” Opt. Lett.32(2), 115–117 (2007).
[CrossRef] [PubMed]

J. Ju, W. Jin, Y. L. Hoo, and M. S. Demokan, “A simple method for estimating the splice loss of photonic-crystal fiber/single-mode fiber,” Microw. Opt. Technol. Lett.42(2), 171–173 (2004).
[CrossRef]

Ju, J.

J. Ju, W. Jin, Y. L. Hoo, and M. S. Demokan, “A simple method for estimating the splice loss of photonic-crystal fiber/single-mode fiber,” Microw. Opt. Technol. Lett.42(2), 171–173 (2004).
[CrossRef]

Kato, Y.

A. Ishikura, Y. Kato, T. Ooyanagi, and M. Myauchi, “Loss factors analysis for single-mode fiber splicing without core axis alignment,” J. Lightwave Technol.7(4), 577–583 (1989).
[CrossRef]

Knabe, K.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003).
[CrossRef] [PubMed]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,’,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000).
[CrossRef]

T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett.22(13), 961–963 (1997).
[CrossRef] [PubMed]

Kristensen, J. T.

Lægsgaard, J.

J. Lægsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun.237(4-6), 431–435 (2004).
[CrossRef]

Liu, X. M.

Liu, Z.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun.282(23), 4527–4531 (2009).
[CrossRef]

Lizier, J. T.

G. E. Town and J. T. Lizier, “Tapered holey fibers for spot-size and numerical-aperture conversion,” Opt. Lett.26(14), 1042–1044 (2001).
[CrossRef] [PubMed]

J. T. Lizier and G. E. Town, “Splice losses in holey optical fiber,” IEEE Photon. Technol. Lett.13(3), 466–467 (2001).

Lu, C.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Mangan, B. J.

Monro, T. M.

Myauchi, M.

A. Ishikura, Y. Kato, T. Ooyanagi, and M. Myauchi, “Loss factors analysis for single-mode fiber splicing without core axis alignment,” J. Lightwave Technol.7(4), 577–583 (1989).
[CrossRef]

Ooyanagi, T.

A. Ishikura, Y. Kato, T. Ooyanagi, and M. Myauchi, “Loss factors analysis for single-mode fiber splicing without core axis alignment,” J. Lightwave Technol.7(4), 577–583 (1989).
[CrossRef]

Ortigosa-Blanch, A.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,’,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000).
[CrossRef]

Paré, C.

Proulx, A.

Rao, M. K.

Richardson, D. J.

Russell, P. S.

Russell, P. S. J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Russell, P. St. J.

Tam, H. Y.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Thapa, R.

Thomas, B. K.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Town, G. E.

J. T. Lizier and G. E. Town, “Splice losses in holey optical fiber,” IEEE Photon. Technol. Lett.13(3), 466–467 (2001).

G. E. Town and J. T. Lizier, “Tapered holey fibers for spot-size and numerical-aperture conversion,” Opt. Lett.26(14), 1042–1044 (2001).
[CrossRef] [PubMed]

Tse, M. L. V.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Turchinovich, D.

Vallée, R.

Wadsworth, W. J.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,’,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000).
[CrossRef]

Wai, P. K. A.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

Wang, Y.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun.282(23), 4527–4531 (2009).
[CrossRef]

Wang, Y. P.

Washburn, B. R.

Xiao, L.

Xiao, L. M.

Xu, Z.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun.282(23), 4527–4531 (2009).
[CrossRef]

Yablon, A. D.

A. D. Yablon and R. T. Bise, “Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses,” IEEE Photon. Technol. Lett.17(1), 118–120 (2005).
[CrossRef]

Zhao, C. L.

Zhao, W.

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun.282(23), 4527–4531 (2009).
[CrossRef]

IEEE Photon. Jour. (1)

G. Fu, W. Jin, X. Fu, and W. Bi, “Air-holes collapse properties of photonic crystal fiber in heating process by CO2 laser,” IEEE Photon. Jour.4(3), 1028–1034 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

A. D. Yablon and R. T. Bise, “Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses,” IEEE Photon. Technol. Lett.17(1), 118–120 (2005).
[CrossRef]

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,’,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000).
[CrossRef]

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009).
[CrossRef]

J. T. Lizier and G. E. Town, “Splice losses in holey optical fiber,” IEEE Photon. Technol. Lett.13(3), 466–467 (2001).

J. Lightwave Technol. (3)

Microw. Opt. Technol. Lett. (1)

J. Ju, W. Jin, Y. L. Hoo, and M. S. Demokan, “A simple method for estimating the splice loss of photonic-crystal fiber/single-mode fiber,” Microw. Opt. Technol. Lett.42(2), 171–173 (2004).
[CrossRef]

Nature (2)

J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Opt. Commun. (2)

J. Lægsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun.237(4-6), 431–435 (2004).
[CrossRef]

Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun.282(23), 4527–4531 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The relationship between collapse ratio, d/Λ, and MFD for the solid-core PCF ESM-12-01, where the inset shows the dependence of the butt coupling loss on the collapse ratio.

Fig. 2
Fig. 2

Schematic diagrams showing (a) a splice between a SMF and a solid-core PCF, where the MFD of the PCF undergoes a smooth transition due to hole collapse and (b) a splice between a SMF and a hollow-core fiber without hole collapse.

Fig. 3
Fig. 3

(a) Variation of the splice loss with the transition length at different collapse ratios and (b) spectral variation of the splice loss at a transition length of 21.6 μm and a collapse ratio of 0.293 for splicing between SMF-28e and the solid-core PCF ESM-12-01.

Fig. 4
Fig. 4

Variation of the splice loss with the air-hole collapse ratio at different transition lengths for splicing between SMF-28e and the hollow-core PCF HC-1550-2.

Fig. 5
Fig. 5

SEM images of (a) ESM-12-01 and (b) HC-1550-02. (c) Experimental setup for the splicing.

Fig. 6
Fig. 6

The splice loss varying with pressure for (a) ESM-12-01 and (b) HC-1550-02, respectively.

Fig. 7
Fig. 7

Splice of ESM-12-01 to SMF-28e at a pressure of (a) 1.34 bar and (b) 1.01 bar (ambient). Splice of HC-1550-02 to SMF at a pressure of (c) 1.65 bar and (d) 1.01 bar (ambient).

Fig. 8
Fig. 8

Optical mode-field distributions of (a) ESM-12-01 with 0% hole collapse ratio, (b) ESM-12-01 with 60% hole collapse ratio, (c) HC-1550-02 with 0% hole collapse ratio, and (d) HC-1550-02 with 10% hole collapse ratio.

Tables (2)

Tables Icon

Table 1 Parameters of the fibers used in the study at 1550 nm

Tables Icon

Table 2 Setting parameters of the S176 fusion splicer

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( Λ Λ 0 ) 2 = 3 2 π 4 ( d 0 Λ 0 ) 2 3 2 π 4 ( d Λ ) 2 ,
ω PCF =[0.549( d Λ )+0.8562]Λ+[0.01298( d Λ ) -3 +0.07]
d Λ = d 0 (1r) Λ 0 1 3 π 6 ( d 0 Λ 0 ) 2 + 3 π 6 [ d 0 (1r) Λ 0 ] 2 ,
 α=20log 2 ω SMF ω PCF ω SMF 2 + ω PCF 2 ,

Metrics