Abstract

We introduce a novel technique that enables pressure measurements to be made in microfluidic chips using optical trapping. Pressure differentials across droplets in a microfluidic channel are determined by monitoring the displacements of a bead in an optical trap. We provide physical interpretation of the results. Our experiments reveal that our device has high sensitivity and can be operated over a wide range of pressures from several Pascals to several thousand Pascals.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Squires and S. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
    [CrossRef]
  2. D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
    [CrossRef] [PubMed]
  3. S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
    [CrossRef] [PubMed]
  4. A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, “Microdroplets: A sea of applications?” Lab Chip 8(8), 1244–1254 (2008).
    [CrossRef] [PubMed]
  5. A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
    [PubMed]
  6. R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
    [CrossRef] [PubMed]
  7. C. N. Baroud, F. Gallaire, and R. Dangla, “Dynamics of microfluidic droplets,” Lab Chip 10(16), 2032–2045 (2010).
    [CrossRef] [PubMed]
  8. L. F. Cheow, L. Yobas, and D.-L. Kwong, “Digital microfluidics: Droplet based logic gates,” Appl. Phys. Lett. 90(5), 054107 (2007).
    [CrossRef]
  9. M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
    [CrossRef] [PubMed]
  10. J. Q. Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, “Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics,” Lab Chip 8(8), 1265–1272 (2008).
    [CrossRef] [PubMed]
  11. P. Mary, L. Dauphinot, N. Bois, M.-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5(2), 24109 (2011).
    [CrossRef] [PubMed]
  12. W. Y. Zhang, W. Zhang, Z. Liu, C. Li, Z. Zhu, and C. J. Yang, “Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection,” Anal. Chem. 84(1), 350–355 (2012).
    [CrossRef] [PubMed]
  13. T. Hatakeyama, D. L. Chen, and R. F. Ismagilov, “Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS,” J. Am. Chem. Soc. 128(8), 2518–2519 (2006).
    [CrossRef] [PubMed]
  14. C.-H. Chen, R. K. Shah, A. R. Abate, and D. A. Weitz, “Janus particles templated from double emulsion droplets generated using microfluidics,” Langmuir 25(8), 4320–4323 (2009).
    [CrossRef] [PubMed]
  15. T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, and S. Seiffert, “controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics,” J. Am. Chem. Soc. 134(10), 4983–4989 (2012).
    [CrossRef] [PubMed]
  16. D. J. Laser and J. G. Santiago, “A review of micropumps,” J. Micromech. Microeng. 14(6), R35–R64 (2004).
    [CrossRef]
  17. P. Garstecki, M. A. Fischbach, and G. M. Whitesides, “Design for mixing using bubbles in branched microfluidic channels,” Appl. Phys. Lett. 86(24), 244108 (2005).
    [CrossRef]
  18. P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, “Mixing with bubbles: a practical technology for use with portable microfluidic devices,” Lab Chip 6(2), 207–212 (2006).
    [CrossRef] [PubMed]
  19. S. Cobos, M. S. Carvalho, and V. Alvarado, “Flow of oil–water emulsions through a constricted capillary,” Int. J. Multiph. Flow 35(6), 507–515 (2009).
    [CrossRef]
  20. L. Wang, M. Zhang, M. Yang, W. Zhu, J. Wu, X. Gong, and W. Wen, “Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips,” Biomicrofluidics 3(3), 34105 (2009).
    [CrossRef] [PubMed]
  21. M. J. Kohl, S. I. Abdel-Khalik, S. M. Jeter, and D. L. Sadowski, “A microfluidic experimental platform with internal pressure measurements,” Sens. Actuators A Phys. 118(2), 212–221 (2005).
    [CrossRef]
  22. W. Song and D. Psaltis, “Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography,” Opt. Express 18(16), 16561–16566 (2010).
    [CrossRef] [PubMed]
  23. W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett. 35(21), 3604–3606 (2010).
    [CrossRef] [PubMed]
  24. A. Orth, E. Schonbrun, and K. B. Crozier, “Multiplexed pressure sensing with elastomer membranes,” Lab Chip 11(22), 3810–3815 (2011).
    [CrossRef] [PubMed]
  25. K. Chung, H. Lee, and H. Lu, “Multiplex pressure measurement in microsystems using volume displacement of particle suspensions,” Lab Chip 9(23), 3345–3353 (2009).
    [CrossRef] [PubMed]
  26. N. Srivastava and M. A. Burns, “Microfluidic pressure sensing using trapped air compression,” Lab Chip 7(5), 633–637 (2007).
    [CrossRef] [PubMed]
  27. B. J. Adzima and S. S. Velankar, “Pressure drops for droplet flows in microfluidic channels,” J. Micromech. Microeng. 16, 1504–1510 (2016).
  28. M. Abkarian, M. Faivre, and H. A. Stone, “High-speed microfluidic differential manometer for cellular-scale hydrodynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 538–542 (2006).
    [CrossRef] [PubMed]
  29. S. A. Vanapalli, A. G. Banpurkar, D. van den Ende, M. H. G. Duits, and F. Mugele, “Hydrodynamic resistance of single confined moving drops in rectangular microchannels,” Lab Chip 9(7), 982–990 (2009).
    [CrossRef] [PubMed]
  30. Y. Jin, and K. B. Crozier, “Microfluidic pressure measurements with optical trapping,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTu2L.3.
  31. P. Tabeling, translated by S. Lin, Introduction to Microfluidics (Oxford University Press, 2005).
  32. D. J. Acheson, Elementary Fluid Dynamics (Oxford University Press, 1990).
  33. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  34. H. Bruus, Theoretical Microfluidics (Oxford University Press, 2008).
  35. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
    [CrossRef] [PubMed]
  36. M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” J. Adhes. Sci. Technol. 8(10), 1063–1075 (1994).
    [CrossRef]
  37. S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
    [CrossRef]
  38. D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of Fluids (Springer, Dordrecht, 2007).
  39. S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
    [CrossRef]
  40. P. Garstecki, H. A. Stone, and G. M. Whitesides, “Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions,” Phys. Rev. Lett. 94(16), 164501 (2005).
    [CrossRef] [PubMed]
  41. ThorLabs model OTKG/M.
  42. M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides, “The pressure drop along rectangular microchannels containing bubbles,” Lab Chip 7(11), 1479–1489 (2007).
    [CrossRef] [PubMed]
  43. W. P. Wong and K. Halvorsen, “The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur,” Opt. Express 14(25), 12517–12531 (2006).
    [CrossRef] [PubMed]
  44. A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010).
    [CrossRef] [PubMed]
  45. M. L. J. Steegmans, A. Warmerdam, K. G. P. H. Schroën, and R. M. Boom, “Dynamic interfacial tension measurements with microfluidic Y-junctions,” Langmuir 25(17), 9751–9758 (2009).
    [CrossRef] [PubMed]
  46. T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett. 86(18), 4163–4166 (2001).
    [CrossRef] [PubMed]
  47. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat Commun 2, 469 (2011).
    [CrossRef] [PubMed]
  48. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
    [CrossRef] [PubMed]
  49. K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: Evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
    [CrossRef] [PubMed]
  50. H. W. Hou, Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformability study of breast cancer cells using microfluidics,” Biomed. Microdevices 11(3), 557–564 (2009).
    [CrossRef] [PubMed]
  51. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13(10), 3777–3786 (2005).
    [CrossRef] [PubMed]
  52. E. Schonbrun, C. Rinzler, and K. B. Crozier, “Microfabricated water immersion zone plate optical tweezer,” Appl. Phys. Lett. 92(7), 071112 (2008).
    [CrossRef]
  53. E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
    [CrossRef] [PubMed]

2012 (3)

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[CrossRef] [PubMed]

W. Y. Zhang, W. Zhang, Z. Liu, C. Li, Z. Zhu, and C. J. Yang, “Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection,” Anal. Chem. 84(1), 350–355 (2012).
[CrossRef] [PubMed]

T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, and S. Seiffert, “controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics,” J. Am. Chem. Soc. 134(10), 4983–4989 (2012).
[CrossRef] [PubMed]

2011 (3)

P. Mary, L. Dauphinot, N. Bois, M.-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5(2), 24109 (2011).
[CrossRef] [PubMed]

A. Orth, E. Schonbrun, and K. B. Crozier, “Multiplexed pressure sensing with elastomer membranes,” Lab Chip 11(22), 3810–3815 (2011).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat Commun 2, 469 (2011).
[CrossRef] [PubMed]

2010 (8)

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[CrossRef] [PubMed]

C. N. Baroud, F. Gallaire, and R. Dangla, “Dynamics of microfluidic droplets,” Lab Chip 10(16), 2032–2045 (2010).
[CrossRef] [PubMed]

D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
[CrossRef] [PubMed]

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010).
[CrossRef] [PubMed]

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

W. Song and D. Psaltis, “Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography,” Opt. Express 18(16), 16561–16566 (2010).
[CrossRef] [PubMed]

W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett. 35(21), 3604–3606 (2010).
[CrossRef] [PubMed]

2009 (8)

M. L. J. Steegmans, A. Warmerdam, K. G. P. H. Schroën, and R. M. Boom, “Dynamic interfacial tension measurements with microfluidic Y-junctions,” Langmuir 25(17), 9751–9758 (2009).
[CrossRef] [PubMed]

C.-H. Chen, R. K. Shah, A. R. Abate, and D. A. Weitz, “Janus particles templated from double emulsion droplets generated using microfluidics,” Langmuir 25(8), 4320–4323 (2009).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: Evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[CrossRef] [PubMed]

H. W. Hou, Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformability study of breast cancer cells using microfluidics,” Biomed. Microdevices 11(3), 557–564 (2009).
[CrossRef] [PubMed]

K. Chung, H. Lee, and H. Lu, “Multiplex pressure measurement in microsystems using volume displacement of particle suspensions,” Lab Chip 9(23), 3345–3353 (2009).
[CrossRef] [PubMed]

S. Cobos, M. S. Carvalho, and V. Alvarado, “Flow of oil–water emulsions through a constricted capillary,” Int. J. Multiph. Flow 35(6), 507–515 (2009).
[CrossRef]

L. Wang, M. Zhang, M. Yang, W. Zhu, J. Wu, X. Gong, and W. Wen, “Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips,” Biomicrofluidics 3(3), 34105 (2009).
[CrossRef] [PubMed]

S. A. Vanapalli, A. G. Banpurkar, D. van den Ende, M. H. G. Duits, and F. Mugele, “Hydrodynamic resistance of single confined moving drops in rectangular microchannels,” Lab Chip 9(7), 982–990 (2009).
[CrossRef] [PubMed]

2008 (4)

E. Schonbrun, C. Rinzler, and K. B. Crozier, “Microfabricated water immersion zone plate optical tweezer,” Appl. Phys. Lett. 92(7), 071112 (2008).
[CrossRef]

J. Q. Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, “Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics,” Lab Chip 8(8), 1265–1272 (2008).
[CrossRef] [PubMed]

S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, “Microdroplets: A sea of applications?” Lab Chip 8(8), 1244–1254 (2008).
[CrossRef] [PubMed]

2007 (4)

L. F. Cheow, L. Yobas, and D.-L. Kwong, “Digital microfluidics: Droplet based logic gates,” Appl. Phys. Lett. 90(5), 054107 (2007).
[CrossRef]

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[CrossRef] [PubMed]

N. Srivastava and M. A. Burns, “Microfluidic pressure sensing using trapped air compression,” Lab Chip 7(5), 633–637 (2007).
[CrossRef] [PubMed]

M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides, “The pressure drop along rectangular microchannels containing bubbles,” Lab Chip 7(11), 1479–1489 (2007).
[CrossRef] [PubMed]

2006 (4)

W. P. Wong and K. Halvorsen, “The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur,” Opt. Express 14(25), 12517–12531 (2006).
[CrossRef] [PubMed]

M. Abkarian, M. Faivre, and H. A. Stone, “High-speed microfluidic differential manometer for cellular-scale hydrodynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 538–542 (2006).
[CrossRef] [PubMed]

P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, “Mixing with bubbles: a practical technology for use with portable microfluidic devices,” Lab Chip 6(2), 207–212 (2006).
[CrossRef] [PubMed]

T. Hatakeyama, D. L. Chen, and R. F. Ismagilov, “Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS,” J. Am. Chem. Soc. 128(8), 2518–2519 (2006).
[CrossRef] [PubMed]

2005 (6)

P. Garstecki, M. A. Fischbach, and G. M. Whitesides, “Design for mixing using bubbles in branched microfluidic channels,” Appl. Phys. Lett. 86(24), 244108 (2005).
[CrossRef]

T. Squires and S. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
[CrossRef]

P. Garstecki, H. A. Stone, and G. M. Whitesides, “Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions,” Phys. Rev. Lett. 94(16), 164501 (2005).
[CrossRef] [PubMed]

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[CrossRef]

M. J. Kohl, S. I. Abdel-Khalik, S. M. Jeter, and D. L. Sadowski, “A microfluidic experimental platform with internal pressure measurements,” Sens. Actuators A Phys. 118(2), 212–221 (2005).
[CrossRef]

E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13(10), 3777–3786 (2005).
[CrossRef] [PubMed]

2004 (1)

D. J. Laser and J. G. Santiago, “A review of micropumps,” J. Micromech. Microeng. 14(6), R35–R64 (2004).
[CrossRef]

2003 (1)

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[CrossRef]

2001 (1)

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett. 86(18), 4163–4166 (2001).
[CrossRef] [PubMed]

1998 (1)

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

1994 (1)

M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” J. Adhes. Sci. Technol. 8(10), 1063–1075 (1994).
[CrossRef]

Abate, A. R.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010).
[CrossRef] [PubMed]

C.-H. Chen, R. K. Shah, A. R. Abate, and D. A. Weitz, “Janus particles templated from double emulsion droplets generated using microfluidics,” Langmuir 25(8), 4320–4323 (2009).
[CrossRef] [PubMed]

Abdel-Khalik, S. I.

M. J. Kohl, S. I. Abdel-Khalik, S. M. Jeter, and D. L. Sadowski, “A microfluidic experimental platform with internal pressure measurements,” Sens. Actuators A Phys. 118(2), 212–221 (2005).
[CrossRef]

Abell, C.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Abkarian, M.

M. Abkarian, M. Faivre, and H. A. Stone, “High-speed microfluidic differential manometer for cellular-scale hydrodynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 538–542 (2006).
[CrossRef] [PubMed]

Alvarado, V.

S. Cobos, M. S. Carvalho, and V. Alvarado, “Flow of oil–water emulsions through a constricted capillary,” Int. J. Multiph. Flow 35(6), 507–515 (2009).
[CrossRef]

Anna, S. L.

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[CrossRef]

Arnold, F. H.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett. 86(18), 4163–4166 (2001).
[CrossRef] [PubMed]

Banpurkar, A. G.

S. A. Vanapalli, A. G. Banpurkar, D. van den Ende, M. H. G. Duits, and F. Mugele, “Hydrodynamic resistance of single confined moving drops in rectangular microchannels,” Lab Chip 9(7), 982–990 (2009).
[CrossRef] [PubMed]

Baroud, C. N.

C. N. Baroud, F. Gallaire, and R. Dangla, “Dynamics of microfluidic droplets,” Lab Chip 10(16), 2032–2045 (2010).
[CrossRef] [PubMed]

Berg, J. M.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[CrossRef]

Bhattacharya, S.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[CrossRef]

Boedicker, J. Q.

J. Q. Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, “Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics,” Lab Chip 8(8), 1265–1272 (2008).
[CrossRef] [PubMed]

Bois, N.

P. Mary, L. Dauphinot, N. Bois, M.-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5(2), 24109 (2011).
[CrossRef] [PubMed]

Bontoux, N.

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[CrossRef]

Boom, R. M.

M. L. J. Steegmans, A. Warmerdam, K. G. P. H. Schroën, and R. M. Boom, “Dynamic interfacial tension measurements with microfluidic Y-junctions,” Langmuir 25(17), 9751–9758 (2009).
[CrossRef] [PubMed]

Brinkmann, M.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[CrossRef] [PubMed]

Burns, M. A.

N. Srivastava and M. A. Burns, “Microfluidic pressure sensing using trapped air compression,” Lab Chip 7(5), 633–637 (2007).
[CrossRef] [PubMed]

Carvalho, M. S.

S. Cobos, M. S. Carvalho, and V. Alvarado, “Flow of oil–water emulsions through a constricted capillary,” Int. J. Multiph. Flow 35(6), 507–515 (2009).
[CrossRef]

Chen, C.-H.

C.-H. Chen, R. K. Shah, A. R. Abate, and D. A. Weitz, “Janus particles templated from double emulsion droplets generated using microfluidics,” Langmuir 25(8), 4320–4323 (2009).
[CrossRef] [PubMed]

Chen, D. L.

T. Hatakeyama, D. L. Chen, and R. F. Ismagilov, “Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS,” J. Am. Chem. Soc. 128(8), 2518–2519 (2006).
[CrossRef] [PubMed]

Cheow, L. F.

L. F. Cheow, L. Yobas, and D.-L. Kwong, “Digital microfluidics: Droplet based logic gates,” Appl. Phys. Lett. 90(5), 054107 (2007).
[CrossRef]

Chung, K.

K. Chung, H. Lee, and H. Lu, “Multiplex pressure measurement in microsystems using volume displacement of particle suspensions,” Lab Chip 9(23), 3345–3353 (2009).
[CrossRef] [PubMed]

Cobos, S.

S. Cobos, M. S. Carvalho, and V. Alvarado, “Flow of oil–water emulsions through a constricted capillary,” Int. J. Multiph. Flow 35(6), 507–515 (2009).
[CrossRef]

Cooper, J.

Courtial, J.

Courtois, F.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Crozier, K. B.

A. Orth, E. Schonbrun, and K. B. Crozier, “Multiplexed pressure sensing with elastomer membranes,” Lab Chip 11(22), 3810–3815 (2011).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat Commun 2, 469 (2011).
[CrossRef] [PubMed]

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: Evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[CrossRef] [PubMed]

E. Schonbrun, C. Rinzler, and K. B. Crozier, “Microfabricated water immersion zone plate optical tweezer,” Appl. Phys. Lett. 92(7), 071112 (2008).
[CrossRef]

Dangla, R.

C. N. Baroud, F. Gallaire, and R. Dangla, “Dynamics of microfluidic droplets,” Lab Chip 10(16), 2032–2045 (2010).
[CrossRef] [PubMed]

Datta, A.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[CrossRef]

Dauphinot, L.

P. Mary, L. Dauphinot, N. Bois, M.-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5(2), 24109 (2011).
[CrossRef] [PubMed]

Demello, A. J.

A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, “Microdroplets: A sea of applications?” Lab Chip 8(8), 1244–1254 (2008).
[CrossRef] [PubMed]

Duffy, D. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Duits, M. H. G.

S. A. Vanapalli, A. G. Banpurkar, D. van den Ende, M. H. G. Duits, and F. Mugele, “Hydrodynamic resistance of single confined moving drops in rectangular microchannels,” Lab Chip 9(7), 982–990 (2009).
[CrossRef] [PubMed]

Edel, J. B.

A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, “Microdroplets: A sea of applications?” Lab Chip 8(8), 1244–1254 (2008).
[CrossRef] [PubMed]

Ehrlicher, A. J.

T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, and S. Seiffert, “controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics,” J. Am. Chem. Soc. 134(10), 4983–4989 (2012).
[CrossRef] [PubMed]

Faivre, M.

M. Abkarian, M. Faivre, and H. A. Stone, “High-speed microfluidic differential manometer for cellular-scale hydrodynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 538–542 (2006).
[CrossRef] [PubMed]

Fischbach, M. A.

P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, “Mixing with bubbles: a practical technology for use with portable microfluidic devices,” Lab Chip 6(2), 207–212 (2006).
[CrossRef] [PubMed]

P. Garstecki, M. A. Fischbach, and G. M. Whitesides, “Design for mixing using bubbles in branched microfluidic channels,” Appl. Phys. Lett. 86(24), 244108 (2005).
[CrossRef]

Fischlechner, M.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Fuerstman, M. J.

M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides, “The pressure drop along rectangular microchannels containing bubbles,” Lab Chip 7(11), 1479–1489 (2007).
[CrossRef] [PubMed]

Gallaire, F.

C. N. Baroud, F. Gallaire, and R. Dangla, “Dynamics of microfluidic droplets,” Lab Chip 10(16), 2032–2045 (2010).
[CrossRef] [PubMed]

Gangopadhyay, S.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[CrossRef]

Garstecki, P.

P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, “Mixing with bubbles: a practical technology for use with portable microfluidic devices,” Lab Chip 6(2), 207–212 (2006).
[CrossRef] [PubMed]

P. Garstecki, H. A. Stone, and G. M. Whitesides, “Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions,” Phys. Rev. Lett. 94(16), 164501 (2005).
[CrossRef] [PubMed]

P. Garstecki, M. A. Fischbach, and G. M. Whitesides, “Design for mixing using bubbles in branched microfluidic channels,” Appl. Phys. Lett. 86(24), 244108 (2005).
[CrossRef]

Gershenfeld, N.

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[CrossRef] [PubMed]

Gong, X.

L. Wang, M. Zhang, M. Yang, W. Zhu, J. Wu, X. Gong, and W. Wen, “Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips,” Biomicrofluidics 3(3), 34105 (2009).
[CrossRef] [PubMed]

Haag, R.

T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, and S. Seiffert, “controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics,” J. Am. Chem. Soc. 134(10), 4983–4989 (2012).
[CrossRef] [PubMed]

Haeberle, S.

D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
[CrossRef] [PubMed]

Halvorsen, K.

Hatakeyama, T.

T. Hatakeyama, D. L. Chen, and R. F. Ismagilov, “Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS,” J. Am. Chem. Soc. 128(8), 2518–2519 (2006).
[CrossRef] [PubMed]

Herminghaus, S.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[CrossRef] [PubMed]

Heyman, J. A.

T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, and S. Seiffert, “controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics,” J. Am. Chem. Soc. 134(10), 4983–4989 (2012).
[CrossRef] [PubMed]

Hollfelder, F.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, “Microdroplets: A sea of applications?” Lab Chip 8(8), 1244–1254 (2008).
[CrossRef] [PubMed]

Hou, H. W.

H. W. Hou, Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformability study of breast cancer cells using microfluidics,” Biomed. Microdevices 11(3), 557–564 (2009).
[CrossRef] [PubMed]

Huck, W. T. S.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Huebner, A.

A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, “Microdroplets: A sea of applications?” Lab Chip 8(8), 1244–1254 (2008).
[CrossRef] [PubMed]

Hung, L.-H.

S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

Ismagilov, R. F.

J. Q. Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, “Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics,” Lab Chip 8(8), 1265–1272 (2008).
[CrossRef] [PubMed]

T. Hatakeyama, D. L. Chen, and R. F. Ismagilov, “Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS,” J. Am. Chem. Soc. 128(8), 2518–2519 (2006).
[CrossRef] [PubMed]

J. Fuerstman, M.

P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, “Mixing with bubbles: a practical technology for use with portable microfluidic devices,” Lab Chip 6(2), 207–212 (2006).
[CrossRef] [PubMed]

Jeter, S. M.

M. J. Kohl, S. I. Abdel-Khalik, S. M. Jeter, and D. L. Sadowski, “A microfluidic experimental platform with internal pressure measurements,” Sens. Actuators A Phys. 118(2), 212–221 (2005).
[CrossRef]

Jordan, P.

Kline, T. R.

J. Q. Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, “Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics,” Lab Chip 8(8), 1265–1272 (2008).
[CrossRef] [PubMed]

Kohl, M. J.

M. J. Kohl, S. I. Abdel-Khalik, S. M. Jeter, and D. L. Sadowski, “A microfluidic experimental platform with internal pressure measurements,” Sens. Actuators A Phys. 118(2), 212–221 (2005).
[CrossRef]

Kumar, A. P.

H. W. Hou, Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformability study of breast cancer cells using microfluidics,” Biomed. Microdevices 11(3), 557–564 (2009).
[CrossRef] [PubMed]

Kwong, D.-L.

L. F. Cheow, L. Yobas, and D.-L. Kwong, “Digital microfluidics: Droplet based logic gates,” Appl. Phys. Lett. 90(5), 054107 (2007).
[CrossRef]

Lai, A.

M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides, “The pressure drop along rectangular microchannels containing bubbles,” Lab Chip 7(11), 1479–1489 (2007).
[CrossRef] [PubMed]

Langhoff, A.

T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, and S. Seiffert, “controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics,” J. Am. Chem. Soc. 134(10), 4983–4989 (2012).
[CrossRef] [PubMed]

Laser, D. J.

D. J. Laser and J. G. Santiago, “A review of micropumps,” J. Micromech. Microeng. 14(6), R35–R64 (2004).
[CrossRef]

Lee, A. P.

S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

Lee, G. Y. H.

H. W. Hou, Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformability study of breast cancer cells using microfluidics,” Biomed. Microdevices 11(3), 557–564 (2009).
[CrossRef] [PubMed]

Lee, H.

K. Chung, H. Lee, and H. Lu, “Multiplex pressure measurement in microsystems using volume displacement of particle suspensions,” Lab Chip 9(23), 3345–3353 (2009).
[CrossRef] [PubMed]

Li, C.

W. Y. Zhang, W. Zhang, Z. Liu, C. Li, Z. Zhu, and C. J. Yang, “Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection,” Anal. Chem. 84(1), 350–355 (2012).
[CrossRef] [PubMed]

Li, L.

J. Q. Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, “Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics,” Lab Chip 8(8), 1265–1272 (2008).
[CrossRef] [PubMed]

Li, Q. S.

H. W. Hou, Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformability study of breast cancer cells using microfluidics,” Biomed. Microdevices 11(3), 557–564 (2009).
[CrossRef] [PubMed]

Lim, C. T.

H. W. Hou, Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformability study of breast cancer cells using microfluidics,” Biomed. Microdevices 11(3), 557–564 (2009).
[CrossRef] [PubMed]

Lin, R.

S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

Liu, Z.

W. Y. Zhang, W. Zhang, Z. Liu, C. Li, Z. Zhu, and C. J. Yang, “Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection,” Anal. Chem. 84(1), 350–355 (2012).
[CrossRef] [PubMed]

Lu, H.

K. Chung, H. Lee, and H. Lu, “Multiplex pressure measurement in microsystems using volume displacement of particle suspensions,” Lab Chip 9(23), 3345–3353 (2009).
[CrossRef] [PubMed]

Mark, D.

D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
[CrossRef] [PubMed]

Mary, P.

P. Mary, L. Dauphinot, N. Bois, M.-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5(2), 24109 (2011).
[CrossRef] [PubMed]

McDonald, J. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Mugele, F.

S. A. Vanapalli, A. G. Banpurkar, D. van den Ende, M. H. G. Duits, and F. Mugele, “Hydrodynamic resistance of single confined moving drops in rectangular microchannels,” Lab Chip 9(7), 982–990 (2009).
[CrossRef] [PubMed]

Ong, C. N.

H. W. Hou, Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformability study of breast cancer cells using microfluidics,” Biomed. Microdevices 11(3), 557–564 (2009).
[CrossRef] [PubMed]

Orth, A.

A. Orth, E. Schonbrun, and K. B. Crozier, “Multiplexed pressure sensing with elastomer membranes,” Lab Chip 11(22), 3810–3815 (2011).
[CrossRef] [PubMed]

Owen, M. J.

M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” J. Adhes. Sci. Technol. 8(10), 1063–1075 (1994).
[CrossRef]

Padgett, M.

Pfohl, T.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[CrossRef] [PubMed]

Piestun, R.

Potier, M.-C.

P. Mary, L. Dauphinot, N. Bois, M.-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5(2), 24109 (2011).
[CrossRef] [PubMed]

Prakash, M.

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[CrossRef] [PubMed]

Psaltis, D.

Quake, S.

T. Squires and S. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
[CrossRef]

Quake, S. R.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett. 86(18), 4163–4166 (2001).
[CrossRef] [PubMed]

Rinzler, C.

E. Schonbrun, C. Rinzler, and K. B. Crozier, “Microfabricated water immersion zone plate optical tweezer,” Appl. Phys. Lett. 92(7), 071112 (2008).
[CrossRef]

Roberts, R. W.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett. 86(18), 4163–4166 (2001).
[CrossRef] [PubMed]

Rossow, T.

T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, and S. Seiffert, “controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics,” J. Am. Chem. Soc. 134(10), 4983–4989 (2012).
[CrossRef] [PubMed]

Roth, G.

D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
[CrossRef] [PubMed]

Sadowski, D. L.

M. J. Kohl, S. I. Abdel-Khalik, S. M. Jeter, and D. L. Sadowski, “A microfluidic experimental platform with internal pressure measurements,” Sens. Actuators A Phys. 118(2), 212–221 (2005).
[CrossRef]

Santiago, J. G.

D. J. Laser and J. G. Santiago, “A review of micropumps,” J. Micromech. Microeng. 14(6), R35–R64 (2004).
[CrossRef]

Schaerli, Y.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Schonbrun, E.

A. Orth, E. Schonbrun, and K. B. Crozier, “Multiplexed pressure sensing with elastomer membranes,” Lab Chip 11(22), 3810–3815 (2011).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat Commun 2, 469 (2011).
[CrossRef] [PubMed]

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: Evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[CrossRef] [PubMed]

E. Schonbrun, C. Rinzler, and K. B. Crozier, “Microfabricated water immersion zone plate optical tweezer,” Appl. Phys. Lett. 92(7), 071112 (2008).
[CrossRef]

E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13(10), 3777–3786 (2005).
[CrossRef] [PubMed]

Schroën, K. G. P. H.

M. L. J. Steegmans, A. Warmerdam, K. G. P. H. Schroën, and R. M. Boom, “Dynamic interfacial tension measurements with microfluidic Y-junctions,” Langmuir 25(17), 9751–9758 (2009).
[CrossRef] [PubMed]

Schueller, O. J. A.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Seemann, R.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[CrossRef] [PubMed]

Seiffert, S.

T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, and S. Seiffert, “controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics,” J. Am. Chem. Soc. 134(10), 4983–4989 (2012).
[CrossRef] [PubMed]

Shah, R. K.

C.-H. Chen, R. K. Shah, A. R. Abate, and D. A. Weitz, “Janus particles templated from double emulsion droplets generated using microfluidics,” Langmuir 25(8), 4320–4323 (2009).
[CrossRef] [PubMed]

Sharma, S.

A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, “Microdroplets: A sea of applications?” Lab Chip 8(8), 1244–1254 (2008).
[CrossRef] [PubMed]

Shevkoplyas, S. S.

M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides, “The pressure drop along rectangular microchannels containing bubbles,” Lab Chip 7(11), 1479–1489 (2007).
[CrossRef] [PubMed]

Sia, S. K.

P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, “Mixing with bubbles: a practical technology for use with portable microfluidic devices,” Lab Chip 6(2), 207–212 (2006).
[CrossRef] [PubMed]

Smith, P. J.

M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” J. Adhes. Sci. Technol. 8(10), 1063–1075 (1994).
[CrossRef]

Song, W.

Squires, T.

T. Squires and S. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
[CrossRef]

Srisa-Art, M.

A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, “Microdroplets: A sea of applications?” Lab Chip 8(8), 1244–1254 (2008).
[CrossRef] [PubMed]

Srivastava, N.

N. Srivastava and M. A. Burns, “Microfluidic pressure sensing using trapped air compression,” Lab Chip 7(5), 633–637 (2007).
[CrossRef] [PubMed]

Steegmans, M. L. J.

M. L. J. Steegmans, A. Warmerdam, K. G. P. H. Schroën, and R. M. Boom, “Dynamic interfacial tension measurements with microfluidic Y-junctions,” Langmuir 25(17), 9751–9758 (2009).
[CrossRef] [PubMed]

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat Commun 2, 469 (2011).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[CrossRef] [PubMed]

Steinvurzel, P. E.

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

Stone, H. A.

M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides, “The pressure drop along rectangular microchannels containing bubbles,” Lab Chip 7(11), 1479–1489 (2007).
[CrossRef] [PubMed]

M. Abkarian, M. Faivre, and H. A. Stone, “High-speed microfluidic differential manometer for cellular-scale hydrodynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 538–542 (2006).
[CrossRef] [PubMed]

P. Garstecki, H. A. Stone, and G. M. Whitesides, “Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions,” Phys. Rev. Lett. 94(16), 164501 (2005).
[CrossRef] [PubMed]

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[CrossRef]

Studer, V.

P. Mary, L. Dauphinot, N. Bois, M.-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5(2), 24109 (2011).
[CrossRef] [PubMed]

Tabeling, P.

P. Mary, L. Dauphinot, N. Bois, M.-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5(2), 24109 (2011).
[CrossRef] [PubMed]

Teh, S.-Y.

S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

Theberge, A. B.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Thiele, J.

A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010).
[CrossRef] [PubMed]

Thorsen, T.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett. 86(18), 4163–4166 (2001).
[CrossRef] [PubMed]

Thurlow, M. E.

M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides, “The pressure drop along rectangular microchannels containing bubbles,” Lab Chip 7(11), 1479–1489 (2007).
[CrossRef] [PubMed]

van den Ende, D.

S. A. Vanapalli, A. G. Banpurkar, D. van den Ende, M. H. G. Duits, and F. Mugele, “Hydrodynamic resistance of single confined moving drops in rectangular microchannels,” Lab Chip 9(7), 982–990 (2009).
[CrossRef] [PubMed]

Vanapalli, S. A.

S. A. Vanapalli, A. G. Banpurkar, D. van den Ende, M. H. G. Duits, and F. Mugele, “Hydrodynamic resistance of single confined moving drops in rectangular microchannels,” Lab Chip 9(7), 982–990 (2009).
[CrossRef] [PubMed]

von Stetten, F.

D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
[CrossRef] [PubMed]

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat Commun 2, 469 (2011).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: Evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[CrossRef] [PubMed]

Wang, L.

L. Wang, M. Zhang, M. Yang, W. Zhu, J. Wu, X. Gong, and W. Wen, “Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips,” Biomicrofluidics 3(3), 34105 (2009).
[CrossRef] [PubMed]

Warmerdam, A.

M. L. J. Steegmans, A. Warmerdam, K. G. P. H. Schroën, and R. M. Boom, “Dynamic interfacial tension measurements with microfluidic Y-junctions,” Langmuir 25(17), 9751–9758 (2009).
[CrossRef] [PubMed]

Weinhart, M.

A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010).
[CrossRef] [PubMed]

Weitz, D. A.

T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, and S. Seiffert, “controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics,” J. Am. Chem. Soc. 134(10), 4983–4989 (2012).
[CrossRef] [PubMed]

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010).
[CrossRef] [PubMed]

C.-H. Chen, R. K. Shah, A. R. Abate, and D. A. Weitz, “Janus particles templated from double emulsion droplets generated using microfluidics,” Langmuir 25(8), 4320–4323 (2009).
[CrossRef] [PubMed]

Wen, W.

L. Wang, M. Zhang, M. Yang, W. Zhu, J. Wu, X. Gong, and W. Wen, “Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips,” Biomicrofluidics 3(3), 34105 (2009).
[CrossRef] [PubMed]

Whitesides, G. M.

M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides, “The pressure drop along rectangular microchannels containing bubbles,” Lab Chip 7(11), 1479–1489 (2007).
[CrossRef] [PubMed]

P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, “Mixing with bubbles: a practical technology for use with portable microfluidic devices,” Lab Chip 6(2), 207–212 (2006).
[CrossRef] [PubMed]

P. Garstecki, H. A. Stone, and G. M. Whitesides, “Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions,” Phys. Rev. Lett. 94(16), 164501 (2005).
[CrossRef] [PubMed]

P. Garstecki, M. A. Fischbach, and G. M. Whitesides, “Design for mixing using bubbles in branched microfluidic channels,” Appl. Phys. Lett. 86(24), 244108 (2005).
[CrossRef]

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Wong, W. P.

Wu, J.

L. Wang, M. Zhang, M. Yang, W. Zhu, J. Wu, X. Gong, and W. Wen, “Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips,” Biomicrofluidics 3(3), 34105 (2009).
[CrossRef] [PubMed]

Wulff, K. D.

Yang, C. J.

W. Y. Zhang, W. Zhang, Z. Liu, C. Li, Z. Zhu, and C. J. Yang, “Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection,” Anal. Chem. 84(1), 350–355 (2012).
[CrossRef] [PubMed]

Yang, M.

L. Wang, M. Zhang, M. Yang, W. Zhu, J. Wu, X. Gong, and W. Wen, “Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips,” Biomicrofluidics 3(3), 34105 (2009).
[CrossRef] [PubMed]

Yobas, L.

L. F. Cheow, L. Yobas, and D.-L. Kwong, “Digital microfluidics: Droplet based logic gates,” Appl. Phys. Lett. 90(5), 054107 (2007).
[CrossRef]

Zengerle, R.

D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
[CrossRef] [PubMed]

Zhang, M.

L. Wang, M. Zhang, M. Yang, W. Zhu, J. Wu, X. Gong, and W. Wen, “Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips,” Biomicrofluidics 3(3), 34105 (2009).
[CrossRef] [PubMed]

Zhang, W.

W. Y. Zhang, W. Zhang, Z. Liu, C. Li, Z. Zhu, and C. J. Yang, “Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection,” Anal. Chem. 84(1), 350–355 (2012).
[CrossRef] [PubMed]

Zhang, W. Y.

W. Y. Zhang, W. Zhang, Z. Liu, C. Li, Z. Zhu, and C. J. Yang, “Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection,” Anal. Chem. 84(1), 350–355 (2012).
[CrossRef] [PubMed]

Zhu, W.

L. Wang, M. Zhang, M. Yang, W. Zhu, J. Wu, X. Gong, and W. Wen, “Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips,” Biomicrofluidics 3(3), 34105 (2009).
[CrossRef] [PubMed]

Zhu, Z.

W. Y. Zhang, W. Zhang, Z. Liu, C. Li, Z. Zhu, and C. J. Yang, “Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection,” Anal. Chem. 84(1), 350–355 (2012).
[CrossRef] [PubMed]

Anal. Chem. (2)

W. Y. Zhang, W. Zhang, Z. Liu, C. Li, Z. Zhu, and C. J. Yang, “Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection,” Anal. Chem. 84(1), 350–355 (2012).
[CrossRef] [PubMed]

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Appl. Phys. Lett. (4)

L. F. Cheow, L. Yobas, and D.-L. Kwong, “Digital microfluidics: Droplet based logic gates,” Appl. Phys. Lett. 90(5), 054107 (2007).
[CrossRef]

P. Garstecki, M. A. Fischbach, and G. M. Whitesides, “Design for mixing using bubbles in branched microfluidic channels,” Appl. Phys. Lett. 86(24), 244108 (2005).
[CrossRef]

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[CrossRef]

E. Schonbrun, C. Rinzler, and K. B. Crozier, “Microfabricated water immersion zone plate optical tweezer,” Appl. Phys. Lett. 92(7), 071112 (2008).
[CrossRef]

Biomed. Microdevices (1)

H. W. Hou, Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformability study of breast cancer cells using microfluidics,” Biomed. Microdevices 11(3), 557–564 (2009).
[CrossRef] [PubMed]

Biomicrofluidics (2)

P. Mary, L. Dauphinot, N. Bois, M.-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics 5(2), 24109 (2011).
[CrossRef] [PubMed]

L. Wang, M. Zhang, M. Yang, W. Zhu, J. Wu, X. Gong, and W. Wen, “Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips,” Biomicrofluidics 3(3), 34105 (2009).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
[CrossRef] [PubMed]

Int. J. Multiph. Flow (1)

S. Cobos, M. S. Carvalho, and V. Alvarado, “Flow of oil–water emulsions through a constricted capillary,” Int. J. Multiph. Flow 35(6), 507–515 (2009).
[CrossRef]

J. Adhes. Sci. Technol. (1)

M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” J. Adhes. Sci. Technol. 8(10), 1063–1075 (1994).
[CrossRef]

J. Am. Chem. Soc. (2)

T. Hatakeyama, D. L. Chen, and R. F. Ismagilov, “Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS,” J. Am. Chem. Soc. 128(8), 2518–2519 (2006).
[CrossRef] [PubMed]

T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, and S. Seiffert, “controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics,” J. Am. Chem. Soc. 134(10), 4983–4989 (2012).
[CrossRef] [PubMed]

J. Microelectromech. Syst. (1)

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

D. J. Laser and J. G. Santiago, “A review of micropumps,” J. Micromech. Microeng. 14(6), R35–R64 (2004).
[CrossRef]

Lab Chip (12)

P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, “Mixing with bubbles: a practical technology for use with portable microfluidic devices,” Lab Chip 6(2), 207–212 (2006).
[CrossRef] [PubMed]

J. Q. Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, “Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics,” Lab Chip 8(8), 1265–1272 (2008).
[CrossRef] [PubMed]

S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, “Microdroplets: A sea of applications?” Lab Chip 8(8), 1244–1254 (2008).
[CrossRef] [PubMed]

C. N. Baroud, F. Gallaire, and R. Dangla, “Dynamics of microfluidic droplets,” Lab Chip 10(16), 2032–2045 (2010).
[CrossRef] [PubMed]

S. A. Vanapalli, A. G. Banpurkar, D. van den Ende, M. H. G. Duits, and F. Mugele, “Hydrodynamic resistance of single confined moving drops in rectangular microchannels,” Lab Chip 9(7), 982–990 (2009).
[CrossRef] [PubMed]

A. Orth, E. Schonbrun, and K. B. Crozier, “Multiplexed pressure sensing with elastomer membranes,” Lab Chip 11(22), 3810–3815 (2011).
[CrossRef] [PubMed]

K. Chung, H. Lee, and H. Lu, “Multiplex pressure measurement in microsystems using volume displacement of particle suspensions,” Lab Chip 9(23), 3345–3353 (2009).
[CrossRef] [PubMed]

N. Srivastava and M. A. Burns, “Microfluidic pressure sensing using trapped air compression,” Lab Chip 7(5), 633–637 (2007).
[CrossRef] [PubMed]

E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010).
[CrossRef] [PubMed]

M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides, “The pressure drop along rectangular microchannels containing bubbles,” Lab Chip 7(11), 1479–1489 (2007).
[CrossRef] [PubMed]

A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip 10(14), 1774–1776 (2010).
[CrossRef] [PubMed]

Langmuir (2)

M. L. J. Steegmans, A. Warmerdam, K. G. P. H. Schroën, and R. M. Boom, “Dynamic interfacial tension measurements with microfluidic Y-junctions,” Langmuir 25(17), 9751–9758 (2009).
[CrossRef] [PubMed]

C.-H. Chen, R. K. Shah, A. R. Abate, and D. A. Weitz, “Janus particles templated from double emulsion droplets generated using microfluidics,” Langmuir 25(8), 4320–4323 (2009).
[CrossRef] [PubMed]

Nano Lett. (2)

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett. 10(9), 3506–3511 (2010).
[CrossRef] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: Evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[CrossRef] [PubMed]

Nat Commun (1)

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat Commun 2, 469 (2011).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

P. Garstecki, H. A. Stone, and G. M. Whitesides, “Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions,” Phys. Rev. Lett. 94(16), 164501 (2005).
[CrossRef] [PubMed]

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett. 86(18), 4163–4166 (2001).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Abkarian, M. Faivre, and H. A. Stone, “High-speed microfluidic differential manometer for cellular-scale hydrodynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(3), 538–542 (2006).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

T. Squires and S. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77(3), 977–1026 (2005).
[CrossRef]

Science (1)

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

M. J. Kohl, S. I. Abdel-Khalik, S. M. Jeter, and D. L. Sadowski, “A microfluidic experimental platform with internal pressure measurements,” Sens. Actuators A Phys. 118(2), 212–221 (2005).
[CrossRef]

Other (8)

B. J. Adzima and S. S. Velankar, “Pressure drops for droplet flows in microfluidic channels,” J. Micromech. Microeng. 16, 1504–1510 (2016).

Y. Jin, and K. B. Crozier, “Microfluidic pressure measurements with optical trapping,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTu2L.3.

P. Tabeling, translated by S. Lin, Introduction to Microfluidics (Oxford University Press, 2005).

D. J. Acheson, Elementary Fluid Dynamics (Oxford University Press, 1990).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

H. Bruus, Theoretical Microfluidics (Oxford University Press, 2008).

D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of Fluids (Springer, Dordrecht, 2007).

ThorLabs model OTKG/M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Illustration of device structure and working principles. Oil droplets flow in the wider main channel. The displacement Δx of the trapped bead in the narrower side channel is related to the pressure differential across the parallel channels.

Fig. 2
Fig. 2

(a) Microscope image of the device. A droplet is flowing in the main channel. The little dots are polystyrene beads. The red line denotes the length of the main channel, and the segmented green line denotes the length of the side channel. (b) Microscope image of the integrated 30 µm × 30 µm flow focusing nozzle. The oil phase (hexadecane) is broken into droplets around the nozzle by squeezing and by shear forces that arise from its encounter with water.

Fig. 3
Fig. 3

(a) Illustration of the modified optical tweezer system. The microfluidic device connected to syringe pumps is sandwiched between two lenses. Laser beam from a diode is collimated by the collimation lenses (CL), reflected by a dichroic mirror (DM) and a mirror (M), and focused into the channel by the bottom lens (100 × magnification). Illumination from a light-emitting diode (LED) is collected by another CL, passes through a DM, and arrives at the chip through the top lens (10 × magnification). The 100 × lens images the trapped bead onto the bottom CCD camera through a relay lens (RL). The 10 × lens images the parallel channels onto the top CCD camera through another RL and a shortpass filter (SP) that blocks the laser beam. (b) Trapped bead imaged by the 100 × lens. (c) Parallel channels imaged by the 10 × lens. Laser light scattered by the trapped bead is visible in the side channel.

Fig. 4
Fig. 4

Calibration results for trapping in water, i.e. relation between bead position and water flow rate in a channel with a cross section identical to that of the side channel. Blue dots: experimental data; red line: linear fit.

Fig. 5
Fig. 5

(a) Variation of bead displacement with time, with flow rates of water and hexadecane being 6.0 µL⋅hr-1 and 2.5 µL⋅hr-1 respectively. The green arrow denotes a pressure peak corresponding to a single droplet, and the yellow arrow denotes a pressure plateau corresponding to two closely-spaced droplets. (b) Dependence of extra pressure on oil droplet length, with flow rates being the same as in (a). Droplet length ranges from ~75 µm to ~185 µm because of squeezing and shear force fluctuations at the flow focusing nozzle, and extra pressure spans from ~2.5 Pa to ~6.3 Pa.

Fig. 6
Fig. 6

(a) Modified channel structure. This illustration shows the actual geometry of the main channel (440 µm in length) and the segmented side channel (7.2 mm in length). The inset displays the bead trapped in the center of the side channel. (b) Microscope image of portion of the parallel channels showing the top parts of the side channel segments. A laser spot scattered by the trapped bead can be seen in the center of the side channel. (c) Microscope image of the integrated 60 µm × 60 µm T junction that generates water droplets in hexadecane. Squeezing and shear forces break the water phase into droplets around the nozzle. (d) Calibration results for trapping in hexadecane, i.e. relation between bead position and hexadecane flow rate in a channel whose cross section matches that of the side channel. Blue dots: experimental data; red line: linear fit.

Fig. 7
Fig. 7

Dependence of extra pressure on water droplet length at different capillary numbers. A non-monotonic behavior of extra pressure is found. Blue circles: data at Ca = 0.0033; green squares: data at Ca = 0.0026; red diamonds: data at Ca = 0.0016. The orange arrow denotes the threshold droplet length for Ca = 0.0033.

Fig. 8
Fig. 8

(a) Microscope images of water droplets with different sizes. The scale bar applies to all the four droplets. (b) Radii of curvature on the image plane for the droplets displayed in (a). It can be observed that the upstream caps become less curved when droplet length increases, and this curvature change is less remarkable for larger droplets. The curvature of downstream ones does not vary with length.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

kΔx=6πrμv,
ΔP= R h Q ,
R h 12μL w 3 h(10.63w/h)

Metrics