Abstract

Highly efficient blue phosphorescent organic light-emitting diodes (PhOLEDs) with a multiple quantum well (MQW) structure were investigated. A peak external quantum efficiency (EQE) of 20.31%, current efficiency of 40.31 cd/A and power efficiency of 30.14 lm/W were achieved in the optimized device with two quantum wells (QWs). The obtained efficiencies are much higher than those of the control devices without QWs. More importantly, the MQW devices exhibit low efficiency roll-off. At a high luminance of 5000 cd/m2, the EQE still keeps at a high value of 18.86% in the optimized MQW device, and the efficiency roll-off is only 7.14%, which is lower than that of 30.78% in the control device (reduced from 16.05% to 11.11%). Meanwhile, the maximum power efficiency of the optimized MQW device was also exhibited more than 54.80% improvement compared to the control device. The high efficiency and low efficiency roll-off are attributed to the effective confinement of charge carriers and excitons by the state-of-the-art MQWs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
    [CrossRef]
  2. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, M. Lo, W. R. Salaneck, D. A. Dos Santos, and J. L. Bredas, “Electroluminescence in conjugated polymers,” Nature397(6715), 121–128 (1999).
    [CrossRef]
  3. Z. Shen, P. E. Burrows, V. Bulovic´, S. R. Forrest, and M. E. Thompson, “Three-Color, Tunable, Organic Light-Emitting Devices,” Science276(5321), 2009–2011 (1997).
    [CrossRef]
  4. B. W. D'Andrade and S. R. Forrest, “White Organic Light-Emitting Devices for Solid-State Lighting,” Adv. Mater. (Deerfield Beach Fla.)16(18), 1585–1595 (2004).
    [CrossRef]
  5. A. Chaskar, H. F. Chen, and K. T. Wong, “Bipolar host materials: a chemical approach for highly efficient electrophosphorescent devices,” Adv. Mater. (Deerfield Beach Fla.)23(34), 3876–3895 (2011).
    [CrossRef] [PubMed]
  6. S. Gong, Y. Chen, J. Luo, C. Yang, C. Zhong, J. Qin, and D. Ma, “Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-Off,” Adv. Funct. Mater.21(6), 1168–1178 (2011).
    [CrossRef]
  7. H. H. Chou and C. H. Cheng, “A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs,” Adv. Mater. (Deerfield Beach Fla.)22(22), 2468–2471 (2010).
    [CrossRef] [PubMed]
  8. L. Duan, D. Zhang, Y. Li, G. Zhang, and Y. Qiu, “Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host,” Opt. Express19(S6Suppl 6), A1265–A1271 (2011).
    [CrossRef] [PubMed]
  9. J. Lee, J. I. Lee, J. Y. Lee, and H. Y. Chu, “Improved performance of blue phosphorescent organic light-emitting diodes with a mixed host system,” Appl. Phys. Lett.95(25), 253304 (2009).
    [CrossRef]
  10. J. S. Swensen, E. Polikarpov, A. V. Ruden, L. Wang, L. S. Sapochak, and A. B. Padmaperuma, “Improved Efficiency in Blue Phosphorescent Organic Light-Emitting Devices Using Host Materials of Lower Triplet Energy than the Phosphorescent Blue Emitter,” Adv. Funct. Mater.21(17), 3250–3258 (2011).
    [CrossRef]
  11. K. S. Yook and J. Y. Lee, “Solution processed high efficiency blue and white phosphorescent organic light-emitting diodes using a high triplet energy exciton blocking layer,” Org. Electron.12(8), 1293–1297 (2011).
    [CrossRef]
  12. Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater.19(1), 84–95 (2009).
    [CrossRef]
  13. T. H. Wu, J. P. Wu, and Y. J. Chiu, “Field-driven all-optical wavelength converter using novel InGaAsP/InAlGaAs quantum wells,” Opt. Express19(27), 26645–26650 (2011).
    [CrossRef] [PubMed]
  14. M. Ortolani, D. Stehr, M. Wagner, M. Helm, G. Pizzi, M. Virgilio, G. Grosso, G. Capellini, and M. De Seta, “Long intersubband relaxation times in n-type germanium quantum wells,” Appl. Phys. Lett.99(20), 201101 (2011).
    [CrossRef]
  15. A. Vardi, S. Sakr, J. Mangeney, P. K. Kandaswamy, E. Monroy, M. Tchernycheva, S. E. Schacham, F. H. Julien, and G. Bahir, “Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron,” Appl. Phys. Lett.99(20), 202111 (2011).
    [CrossRef]
  16. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett.99(14), 141106 (2011).
    [CrossRef]
  17. L. Schade, U. T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, and M. Kneissl, “On the optical polarization properties of semipolar InGaN quantum wells,” Appl. Phys. Lett.99(5), 051103 (2011).
    [CrossRef]
  18. Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang, and G. Dong, “High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12-tetraphenylnaphthacene multiple quantum wells,” Appl. Phys. Lett.81(19), 3540–3542 (2002).
    [CrossRef]
  19. Y. Qiu, Y. Gao, P. Wei, and L. Wang, “Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells,” Appl. Phys. Lett.80(15), 2628–2630 (2002).
    [CrossRef]
  20. J. Huang, K. Yang, S. Liu, and H. Jiang, “High-brightness organic double-quantum-well electroluminescent devices,” Appl. Phys. Lett.77(12), 1750–1752 (2000).
    [CrossRef]
  21. S. H. Kim, J. Jang, J. M. Hong, and J. Y. Lee, “High efficiency phosphorescent organic light emitting diodes using triplet quantum well structure,” Appl. Phys. Lett.90(17), 173501 (2007).
    [CrossRef]
  22. K. S. Yook, S. E. Jang, S. O. Jeon, and J. Y. Lee, “Fabrication and Efficiency Improvement of Soluble Blue Phosphorescent Organic Light-Emitting Diodes Using a Multilayer Structure Based on an Alcohol-Soluble Blue Phosphorescent Emitting Layer,” Adv. Mater. (Deerfield Beach Fla.)22(40), 4479–4483 (2010).
    [CrossRef] [PubMed]
  23. G. G. Malliaras and J. C. Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys.83(10), 5399–5403 (1998).
    [CrossRef]
  24. B. C. Hen and C. S. Lee, EeS. T. Lee, E. E. P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, “Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials Time (µ s),” Jpn. J. Appl. Phys.39, 1190–1192 (2000).
  25. S. Su, T. Chiba, T. Takeda, and J. Kido, “Pyridine-Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2125–2130 (2008).
    [CrossRef]
  26. S. Reineke, K. Walzer, and K. Leo, “Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters,” Phys. Rev. B75(12), 125328 (2007).
    [CrossRef]
  27. C. H. Hsiao, S. W. Liu, C. T. Chen, and J. H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Org. Electron.11(9), 1500–1506 (2010).
    [CrossRef]
  28. S. J. Lee, J. H. Seo, G. Y. Kim, and Y. K. Kim, “A Study on the Phosphorescent Blue Organic Light-Emitting Diodes Using Various Host Materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)507(1), 345–352 (2009).
    [CrossRef]
  29. Q. Wang, J. Ding, D. Ma, Y. Cheng, and L. Wang, “Highly efficient single-emitting-layer white organic light-emitting diodes with reduced efficiency roll-off,” Appl. Phys. Lett.94(10), 103503 (2009).
    [CrossRef]
  30. R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
    [CrossRef]

2011 (10)

A. Chaskar, H. F. Chen, and K. T. Wong, “Bipolar host materials: a chemical approach for highly efficient electrophosphorescent devices,” Adv. Mater. (Deerfield Beach Fla.)23(34), 3876–3895 (2011).
[CrossRef] [PubMed]

S. Gong, Y. Chen, J. Luo, C. Yang, C. Zhong, J. Qin, and D. Ma, “Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-Off,” Adv. Funct. Mater.21(6), 1168–1178 (2011).
[CrossRef]

L. Duan, D. Zhang, Y. Li, G. Zhang, and Y. Qiu, “Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host,” Opt. Express19(S6Suppl 6), A1265–A1271 (2011).
[CrossRef] [PubMed]

T. H. Wu, J. P. Wu, and Y. J. Chiu, “Field-driven all-optical wavelength converter using novel InGaAsP/InAlGaAs quantum wells,” Opt. Express19(27), 26645–26650 (2011).
[CrossRef] [PubMed]

M. Ortolani, D. Stehr, M. Wagner, M. Helm, G. Pizzi, M. Virgilio, G. Grosso, G. Capellini, and M. De Seta, “Long intersubband relaxation times in n-type germanium quantum wells,” Appl. Phys. Lett.99(20), 201101 (2011).
[CrossRef]

A. Vardi, S. Sakr, J. Mangeney, P. K. Kandaswamy, E. Monroy, M. Tchernycheva, S. E. Schacham, F. H. Julien, and G. Bahir, “Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron,” Appl. Phys. Lett.99(20), 202111 (2011).
[CrossRef]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett.99(14), 141106 (2011).
[CrossRef]

L. Schade, U. T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, and M. Kneissl, “On the optical polarization properties of semipolar InGaN quantum wells,” Appl. Phys. Lett.99(5), 051103 (2011).
[CrossRef]

J. S. Swensen, E. Polikarpov, A. V. Ruden, L. Wang, L. S. Sapochak, and A. B. Padmaperuma, “Improved Efficiency in Blue Phosphorescent Organic Light-Emitting Devices Using Host Materials of Lower Triplet Energy than the Phosphorescent Blue Emitter,” Adv. Funct. Mater.21(17), 3250–3258 (2011).
[CrossRef]

K. S. Yook and J. Y. Lee, “Solution processed high efficiency blue and white phosphorescent organic light-emitting diodes using a high triplet energy exciton blocking layer,” Org. Electron.12(8), 1293–1297 (2011).
[CrossRef]

2010 (3)

K. S. Yook, S. E. Jang, S. O. Jeon, and J. Y. Lee, “Fabrication and Efficiency Improvement of Soluble Blue Phosphorescent Organic Light-Emitting Diodes Using a Multilayer Structure Based on an Alcohol-Soluble Blue Phosphorescent Emitting Layer,” Adv. Mater. (Deerfield Beach Fla.)22(40), 4479–4483 (2010).
[CrossRef] [PubMed]

C. H. Hsiao, S. W. Liu, C. T. Chen, and J. H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Org. Electron.11(9), 1500–1506 (2010).
[CrossRef]

H. H. Chou and C. H. Cheng, “A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs,” Adv. Mater. (Deerfield Beach Fla.)22(22), 2468–2471 (2010).
[CrossRef] [PubMed]

2009 (4)

J. Lee, J. I. Lee, J. Y. Lee, and H. Y. Chu, “Improved performance of blue phosphorescent organic light-emitting diodes with a mixed host system,” Appl. Phys. Lett.95(25), 253304 (2009).
[CrossRef]

S. J. Lee, J. H. Seo, G. Y. Kim, and Y. K. Kim, “A Study on the Phosphorescent Blue Organic Light-Emitting Diodes Using Various Host Materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)507(1), 345–352 (2009).
[CrossRef]

Q. Wang, J. Ding, D. Ma, Y. Cheng, and L. Wang, “Highly efficient single-emitting-layer white organic light-emitting diodes with reduced efficiency roll-off,” Appl. Phys. Lett.94(10), 103503 (2009).
[CrossRef]

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater.19(1), 84–95 (2009).
[CrossRef]

2008 (1)

S. Su, T. Chiba, T. Takeda, and J. Kido, “Pyridine-Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2125–2130 (2008).
[CrossRef]

2007 (2)

S. Reineke, K. Walzer, and K. Leo, “Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters,” Phys. Rev. B75(12), 125328 (2007).
[CrossRef]

S. H. Kim, J. Jang, J. M. Hong, and J. Y. Lee, “High efficiency phosphorescent organic light emitting diodes using triplet quantum well structure,” Appl. Phys. Lett.90(17), 173501 (2007).
[CrossRef]

2004 (1)

B. W. D'Andrade and S. R. Forrest, “White Organic Light-Emitting Devices for Solid-State Lighting,” Adv. Mater. (Deerfield Beach Fla.)16(18), 1585–1595 (2004).
[CrossRef]

2003 (1)

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

2002 (2)

Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang, and G. Dong, “High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12-tetraphenylnaphthacene multiple quantum wells,” Appl. Phys. Lett.81(19), 3540–3542 (2002).
[CrossRef]

Y. Qiu, Y. Gao, P. Wei, and L. Wang, “Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells,” Appl. Phys. Lett.80(15), 2628–2630 (2002).
[CrossRef]

2000 (2)

J. Huang, K. Yang, S. Liu, and H. Jiang, “High-brightness organic double-quantum-well electroluminescent devices,” Appl. Phys. Lett.77(12), 1750–1752 (2000).
[CrossRef]

B. C. Hen and C. S. Lee, EeS. T. Lee, E. E. P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, “Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials Time (µ s),” Jpn. J. Appl. Phys.39, 1190–1192 (2000).

B. C. Hen and C. S. Lee, EeS. T. Lee, E. E. P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, “Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials Time (µ s),” Jpn. J. Appl. Phys.39, 1190–1192 (2000).

1999 (1)

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, M. Lo, W. R. Salaneck, D. A. Dos Santos, and J. L. Bredas, “Electroluminescence in conjugated polymers,” Nature397(6715), 121–128 (1999).
[CrossRef]

1998 (1)

G. G. Malliaras and J. C. Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys.83(10), 5399–5403 (1998).
[CrossRef]

1997 (1)

Z. Shen, P. E. Burrows, V. Bulovic´, S. R. Forrest, and M. E. Thompson, “Three-Color, Tunable, Organic Light-Emitting Devices,” Science276(5321), 2009–2011 (1997).
[CrossRef]

1987 (1)

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
[CrossRef]

Bahir, G.

A. Vardi, S. Sakr, J. Mangeney, P. K. Kandaswamy, E. Monroy, M. Tchernycheva, S. E. Schacham, F. H. Julien, and G. Bahir, “Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron,” Appl. Phys. Lett.99(20), 202111 (2011).
[CrossRef]

Bradley, D. D. C.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, M. Lo, W. R. Salaneck, D. A. Dos Santos, and J. L. Bredas, “Electroluminescence in conjugated polymers,” Nature397(6715), 121–128 (1999).
[CrossRef]

Bredas, J. L.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, M. Lo, W. R. Salaneck, D. A. Dos Santos, and J. L. Bredas, “Electroluminescence in conjugated polymers,” Nature397(6715), 121–128 (1999).
[CrossRef]

Brown, J. J.

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

Bulovic´, V.

Z. Shen, P. E. Burrows, V. Bulovic´, S. R. Forrest, and M. E. Thompson, “Three-Color, Tunable, Organic Light-Emitting Devices,” Science276(5321), 2009–2011 (1997).
[CrossRef]

Burroughes, J. H.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, M. Lo, W. R. Salaneck, D. A. Dos Santos, and J. L. Bredas, “Electroluminescence in conjugated polymers,” Nature397(6715), 121–128 (1999).
[CrossRef]

Burrows, P. E.

Z. Shen, P. E. Burrows, V. Bulovic´, S. R. Forrest, and M. E. Thompson, “Three-Color, Tunable, Organic Light-Emitting Devices,” Science276(5321), 2009–2011 (1997).
[CrossRef]

Capellini, G.

M. Ortolani, D. Stehr, M. Wagner, M. Helm, G. Pizzi, M. Virgilio, G. Grosso, G. Capellini, and M. De Seta, “Long intersubband relaxation times in n-type germanium quantum wells,” Appl. Phys. Lett.99(20), 201101 (2011).
[CrossRef]

Chaisakul, P.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett.99(14), 141106 (2011).
[CrossRef]

Chan, Y. C.

B. C. Hen and C. S. Lee, EeS. T. Lee, E. E. P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, “Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials Time (µ s),” Jpn. J. Appl. Phys.39, 1190–1192 (2000).

Chaskar, A.

A. Chaskar, H. F. Chen, and K. T. Wong, “Bipolar host materials: a chemical approach for highly efficient electrophosphorescent devices,” Adv. Mater. (Deerfield Beach Fla.)23(34), 3876–3895 (2011).
[CrossRef] [PubMed]

Chen, C. T.

C. H. Hsiao, S. W. Liu, C. T. Chen, and J. H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Org. Electron.11(9), 1500–1506 (2010).
[CrossRef]

Chen, H. F.

A. Chaskar, H. F. Chen, and K. T. Wong, “Bipolar host materials: a chemical approach for highly efficient electrophosphorescent devices,” Adv. Mater. (Deerfield Beach Fla.)23(34), 3876–3895 (2011).
[CrossRef] [PubMed]

Chen, Y.

S. Gong, Y. Chen, J. Luo, C. Yang, C. Zhong, J. Qin, and D. Ma, “Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-Off,” Adv. Funct. Mater.21(6), 1168–1178 (2011).
[CrossRef]

Cheng, C. H.

H. H. Chou and C. H. Cheng, “A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs,” Adv. Mater. (Deerfield Beach Fla.)22(22), 2468–2471 (2010).
[CrossRef] [PubMed]

Cheng, Y.

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater.19(1), 84–95 (2009).
[CrossRef]

Q. Wang, J. Ding, D. Ma, Y. Cheng, and L. Wang, “Highly efficient single-emitting-layer white organic light-emitting diodes with reduced efficiency roll-off,” Appl. Phys. Lett.94(10), 103503 (2009).
[CrossRef]

Chiba, T.

S. Su, T. Chiba, T. Takeda, and J. Kido, “Pyridine-Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2125–2130 (2008).
[CrossRef]

Chiu, Y. J.

Chou, H. H.

H. H. Chou and C. H. Cheng, “A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs,” Adv. Mater. (Deerfield Beach Fla.)22(22), 2468–2471 (2010).
[CrossRef] [PubMed]

Chrastina, D.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett.99(14), 141106 (2011).
[CrossRef]

Chu, H. Y.

J. Lee, J. I. Lee, J. Y. Lee, and H. Y. Chu, “Improved performance of blue phosphorescent organic light-emitting diodes with a mixed host system,” Appl. Phys. Lett.95(25), 253304 (2009).
[CrossRef]

Coudevylle, J. R.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett.99(14), 141106 (2011).
[CrossRef]

D'Andrade, B. W.

B. W. D'Andrade and S. R. Forrest, “White Organic Light-Emitting Devices for Solid-State Lighting,” Adv. Mater. (Deerfield Beach Fla.)16(18), 1585–1595 (2004).
[CrossRef]

De Seta, M.

M. Ortolani, D. Stehr, M. Wagner, M. Helm, G. Pizzi, M. Virgilio, G. Grosso, G. Capellini, and M. De Seta, “Long intersubband relaxation times in n-type germanium quantum wells,” Appl. Phys. Lett.99(20), 201101 (2011).
[CrossRef]

Ding, J.

Q. Wang, J. Ding, D. Ma, Y. Cheng, and L. Wang, “Highly efficient single-emitting-layer white organic light-emitting diodes with reduced efficiency roll-off,” Appl. Phys. Lett.94(10), 103503 (2009).
[CrossRef]

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater.19(1), 84–95 (2009).
[CrossRef]

Dong, G.

Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang, and G. Dong, “High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12-tetraphenylnaphthacene multiple quantum wells,” Appl. Phys. Lett.81(19), 3540–3542 (2002).
[CrossRef]

Dos Santos, D. A.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, M. Lo, W. R. Salaneck, D. A. Dos Santos, and J. L. Bredas, “Electroluminescence in conjugated polymers,” Nature397(6715), 121–128 (1999).
[CrossRef]

Duan, L.

L. Duan, D. Zhang, Y. Li, G. Zhang, and Y. Qiu, “Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host,” Opt. Express19(S6Suppl 6), A1265–A1271 (2011).
[CrossRef] [PubMed]

Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang, and G. Dong, “High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12-tetraphenylnaphthacene multiple quantum wells,” Appl. Phys. Lett.81(19), 3540–3542 (2002).
[CrossRef]

Edmond, S.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett.99(14), 141106 (2011).
[CrossRef]

Forrest, S. R.

B. W. D'Andrade and S. R. Forrest, “White Organic Light-Emitting Devices for Solid-State Lighting,” Adv. Mater. (Deerfield Beach Fla.)16(18), 1585–1595 (2004).
[CrossRef]

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

Z. Shen, P. E. Burrows, V. Bulovic´, S. R. Forrest, and M. E. Thompson, “Three-Color, Tunable, Organic Light-Emitting Devices,” Science276(5321), 2009–2011 (1997).
[CrossRef]

Friend, R. H.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, M. Lo, W. R. Salaneck, D. A. Dos Santos, and J. L. Bredas, “Electroluminescence in conjugated polymers,” Nature397(6715), 121–128 (1999).
[CrossRef]

Gambling, W.

B. C. Hen and C. S. Lee, EeS. T. Lee, E. E. P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, “Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials Time (µ s),” Jpn. J. Appl. Phys.39, 1190–1192 (2000).

Gao, Y.

Y. Qiu, Y. Gao, P. Wei, and L. Wang, “Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells,” Appl. Phys. Lett.80(15), 2628–2630 (2002).
[CrossRef]

Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang, and G. Dong, “High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12-tetraphenylnaphthacene multiple quantum wells,” Appl. Phys. Lett.81(19), 3540–3542 (2002).
[CrossRef]

Garon, S.

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

Gong, S.

S. Gong, Y. Chen, J. Luo, C. Yang, C. Zhong, J. Qin, and D. Ma, “Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-Off,” Adv. Funct. Mater.21(6), 1168–1178 (2011).
[CrossRef]

Grosso, G.

M. Ortolani, D. Stehr, M. Wagner, M. Helm, G. Pizzi, M. Virgilio, G. Grosso, G. Capellini, and M. De Seta, “Long intersubband relaxation times in n-type germanium quantum wells,” Appl. Phys. Lett.99(20), 201101 (2011).
[CrossRef]

Gymer, R. W.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, M. Lo, W. R. Salaneck, D. A. Dos Santos, and J. L. Bredas, “Electroluminescence in conjugated polymers,” Nature397(6715), 121–128 (1999).
[CrossRef]

Helm, M.

M. Ortolani, D. Stehr, M. Wagner, M. Helm, G. Pizzi, M. Virgilio, G. Grosso, G. Capellini, and M. De Seta, “Long intersubband relaxation times in n-type germanium quantum wells,” Appl. Phys. Lett.99(20), 201101 (2011).
[CrossRef]

Hen, B. C.

B. C. Hen and C. S. Lee, EeS. T. Lee, E. E. P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, “Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials Time (µ s),” Jpn. J. Appl. Phys.39, 1190–1192 (2000).

Holmes, A. B.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, M. Lo, W. R. Salaneck, D. A. Dos Santos, and J. L. Bredas, “Electroluminescence in conjugated polymers,” Nature397(6715), 121–128 (1999).
[CrossRef]

Holmes, R. J.

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

Hong, J. M.

S. H. Kim, J. Jang, J. M. Hong, and J. Y. Lee, “High efficiency phosphorescent organic light emitting diodes using triplet quantum well structure,” Appl. Phys. Lett.90(17), 173501 (2007).
[CrossRef]

Hsiao, C. H.

C. H. Hsiao, S. W. Liu, C. T. Chen, and J. H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Org. Electron.11(9), 1500–1506 (2010).
[CrossRef]

Huang, J.

J. Huang, K. Yang, S. Liu, and H. Jiang, “High-brightness organic double-quantum-well electroluminescent devices,” Appl. Phys. Lett.77(12), 1750–1752 (2000).
[CrossRef]

Isella, G.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett.99(14), 141106 (2011).
[CrossRef]

Izard, N.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett.99(14), 141106 (2011).
[CrossRef]

Jang, J.

S. H. Kim, J. Jang, J. M. Hong, and J. Y. Lee, “High efficiency phosphorescent organic light emitting diodes using triplet quantum well structure,” Appl. Phys. Lett.90(17), 173501 (2007).
[CrossRef]

Jang, S. E.

K. S. Yook, S. E. Jang, S. O. Jeon, and J. Y. Lee, “Fabrication and Efficiency Improvement of Soluble Blue Phosphorescent Organic Light-Emitting Diodes Using a Multilayer Structure Based on an Alcohol-Soluble Blue Phosphorescent Emitting Layer,” Adv. Mater. (Deerfield Beach Fla.)22(40), 4479–4483 (2010).
[CrossRef] [PubMed]

Jeon, S. O.

K. S. Yook, S. E. Jang, S. O. Jeon, and J. Y. Lee, “Fabrication and Efficiency Improvement of Soluble Blue Phosphorescent Organic Light-Emitting Diodes Using a Multilayer Structure Based on an Alcohol-Soluble Blue Phosphorescent Emitting Layer,” Adv. Mater. (Deerfield Beach Fla.)22(40), 4479–4483 (2010).
[CrossRef] [PubMed]

Jiang, H.

J. Huang, K. Yang, S. Liu, and H. Jiang, “High-brightness organic double-quantum-well electroluminescent devices,” Appl. Phys. Lett.77(12), 1750–1752 (2000).
[CrossRef]

Jing, X.

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater.19(1), 84–95 (2009).
[CrossRef]

Julien, F. H.

A. Vardi, S. Sakr, J. Mangeney, P. K. Kandaswamy, E. Monroy, M. Tchernycheva, S. E. Schacham, F. H. Julien, and G. Bahir, “Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron,” Appl. Phys. Lett.99(20), 202111 (2011).
[CrossRef]

Kandaswamy, P. K.

A. Vardi, S. Sakr, J. Mangeney, P. K. Kandaswamy, E. Monroy, M. Tchernycheva, S. E. Schacham, F. H. Julien, and G. Bahir, “Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron,” Appl. Phys. Lett.99(20), 202111 (2011).
[CrossRef]

Kido, J.

S. Su, T. Chiba, T. Takeda, and J. Kido, “Pyridine-Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2125–2130 (2008).
[CrossRef]

Kim, G. Y.

S. J. Lee, J. H. Seo, G. Y. Kim, and Y. K. Kim, “A Study on the Phosphorescent Blue Organic Light-Emitting Diodes Using Various Host Materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)507(1), 345–352 (2009).
[CrossRef]

Kim, S. H.

S. H. Kim, J. Jang, J. M. Hong, and J. Y. Lee, “High efficiency phosphorescent organic light emitting diodes using triplet quantum well structure,” Appl. Phys. Lett.90(17), 173501 (2007).
[CrossRef]

Kim, Y. K.

S. J. Lee, J. H. Seo, G. Y. Kim, and Y. K. Kim, “A Study on the Phosphorescent Blue Organic Light-Emitting Diodes Using Various Host Materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)507(1), 345–352 (2009).
[CrossRef]

Kneissl, M.

L. Schade, U. T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, and M. Kneissl, “On the optical polarization properties of semipolar InGaN quantum wells,” Appl. Phys. Lett.99(5), 051103 (2011).
[CrossRef]

Kwong, R. C.

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

Lee, C. S.

B. C. Hen and C. S. Lee, EeS. T. Lee, E. E. P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, “Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials Time (µ s),” Jpn. J. Appl. Phys.39, 1190–1192 (2000).

Lee, J.

J. Lee, J. I. Lee, J. Y. Lee, and H. Y. Chu, “Improved performance of blue phosphorescent organic light-emitting diodes with a mixed host system,” Appl. Phys. Lett.95(25), 253304 (2009).
[CrossRef]

Lee, J. H.

C. H. Hsiao, S. W. Liu, C. T. Chen, and J. H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Org. Electron.11(9), 1500–1506 (2010).
[CrossRef]

Lee, J. I.

J. Lee, J. I. Lee, J. Y. Lee, and H. Y. Chu, “Improved performance of blue phosphorescent organic light-emitting diodes with a mixed host system,” Appl. Phys. Lett.95(25), 253304 (2009).
[CrossRef]

Lee, J. Y.

K. S. Yook and J. Y. Lee, “Solution processed high efficiency blue and white phosphorescent organic light-emitting diodes using a high triplet energy exciton blocking layer,” Org. Electron.12(8), 1293–1297 (2011).
[CrossRef]

K. S. Yook, S. E. Jang, S. O. Jeon, and J. Y. Lee, “Fabrication and Efficiency Improvement of Soluble Blue Phosphorescent Organic Light-Emitting Diodes Using a Multilayer Structure Based on an Alcohol-Soluble Blue Phosphorescent Emitting Layer,” Adv. Mater. (Deerfield Beach Fla.)22(40), 4479–4483 (2010).
[CrossRef] [PubMed]

J. Lee, J. I. Lee, J. Y. Lee, and H. Y. Chu, “Improved performance of blue phosphorescent organic light-emitting diodes with a mixed host system,” Appl. Phys. Lett.95(25), 253304 (2009).
[CrossRef]

S. H. Kim, J. Jang, J. M. Hong, and J. Y. Lee, “High efficiency phosphorescent organic light emitting diodes using triplet quantum well structure,” Appl. Phys. Lett.90(17), 173501 (2007).
[CrossRef]

Lee, S. J.

S. J. Lee, J. H. Seo, G. Y. Kim, and Y. K. Kim, “A Study on the Phosphorescent Blue Organic Light-Emitting Diodes Using Various Host Materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)507(1), 345–352 (2009).
[CrossRef]

Lee, S. T.

B. C. Hen and C. S. Lee, EeS. T. Lee, E. E. P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, “Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials Time (µ s),” Jpn. J. Appl. Phys.39, 1190–1192 (2000).

Leo, K.

S. Reineke, K. Walzer, and K. Leo, “Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters,” Phys. Rev. B75(12), 125328 (2007).
[CrossRef]

Li, Y.

Liu, S.

J. Huang, K. Yang, S. Liu, and H. Jiang, “High-brightness organic double-quantum-well electroluminescent devices,” Appl. Phys. Lett.77(12), 1750–1752 (2000).
[CrossRef]

Liu, S. W.

C. H. Hsiao, S. W. Liu, C. T. Chen, and J. H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Org. Electron.11(9), 1500–1506 (2010).
[CrossRef]

Lo, M.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, M. Lo, W. R. Salaneck, D. A. Dos Santos, and J. L. Bredas, “Electroluminescence in conjugated polymers,” Nature397(6715), 121–128 (1999).
[CrossRef]

Luo, J.

S. Gong, Y. Chen, J. Luo, C. Yang, C. Zhong, J. Qin, and D. Ma, “Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-Off,” Adv. Funct. Mater.21(6), 1168–1178 (2011).
[CrossRef]

Ma, D.

S. Gong, Y. Chen, J. Luo, C. Yang, C. Zhong, J. Qin, and D. Ma, “Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-Off,” Adv. Funct. Mater.21(6), 1168–1178 (2011).
[CrossRef]

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater.19(1), 84–95 (2009).
[CrossRef]

Q. Wang, J. Ding, D. Ma, Y. Cheng, and L. Wang, “Highly efficient single-emitting-layer white organic light-emitting diodes with reduced efficiency roll-off,” Appl. Phys. Lett.94(10), 103503 (2009).
[CrossRef]

Malliaras, G. G.

G. G. Malliaras and J. C. Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys.83(10), 5399–5403 (1998).
[CrossRef]

Mangeney, J.

A. Vardi, S. Sakr, J. Mangeney, P. K. Kandaswamy, E. Monroy, M. Tchernycheva, S. E. Schacham, F. H. Julien, and G. Bahir, “Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron,” Appl. Phys. Lett.99(20), 202111 (2011).
[CrossRef]

Marks, R. N.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, M. Lo, W. R. Salaneck, D. A. Dos Santos, and J. L. Bredas, “Electroluminescence in conjugated polymers,” Nature397(6715), 121–128 (1999).
[CrossRef]

Marris-Morini, D.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett.99(14), 141106 (2011).
[CrossRef]

Monroy, E.

A. Vardi, S. Sakr, J. Mangeney, P. K. Kandaswamy, E. Monroy, M. Tchernycheva, S. E. Schacham, F. H. Julien, and G. Bahir, “Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron,” Appl. Phys. Lett.99(20), 202111 (2011).
[CrossRef]

Ortolani, M.

M. Ortolani, D. Stehr, M. Wagner, M. Helm, G. Pizzi, M. Virgilio, G. Grosso, G. Capellini, and M. De Seta, “Long intersubband relaxation times in n-type germanium quantum wells,” Appl. Phys. Lett.99(20), 201101 (2011).
[CrossRef]

Padmaperuma, A. B.

J. S. Swensen, E. Polikarpov, A. V. Ruden, L. Wang, L. S. Sapochak, and A. B. Padmaperuma, “Improved Efficiency in Blue Phosphorescent Organic Light-Emitting Devices Using Host Materials of Lower Triplet Energy than the Phosphorescent Blue Emitter,” Adv. Funct. Mater.21(17), 3250–3258 (2011).
[CrossRef]

Pizzi, G.

M. Ortolani, D. Stehr, M. Wagner, M. Helm, G. Pizzi, M. Virgilio, G. Grosso, G. Capellini, and M. De Seta, “Long intersubband relaxation times in n-type germanium quantum wells,” Appl. Phys. Lett.99(20), 201101 (2011).
[CrossRef]

Ploch, S.

L. Schade, U. T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, and M. Kneissl, “On the optical polarization properties of semipolar InGaN quantum wells,” Appl. Phys. Lett.99(5), 051103 (2011).
[CrossRef]

Polikarpov, E.

J. S. Swensen, E. Polikarpov, A. V. Ruden, L. Wang, L. S. Sapochak, and A. B. Padmaperuma, “Improved Efficiency in Blue Phosphorescent Organic Light-Emitting Devices Using Host Materials of Lower Triplet Energy than the Phosphorescent Blue Emitter,” Adv. Funct. Mater.21(17), 3250–3258 (2011).
[CrossRef]

Qin, J.

S. Gong, Y. Chen, J. Luo, C. Yang, C. Zhong, J. Qin, and D. Ma, “Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-Off,” Adv. Funct. Mater.21(6), 1168–1178 (2011).
[CrossRef]

Qiu, Y.

L. Duan, D. Zhang, Y. Li, G. Zhang, and Y. Qiu, “Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host,” Opt. Express19(S6Suppl 6), A1265–A1271 (2011).
[CrossRef] [PubMed]

Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang, and G. Dong, “High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12-tetraphenylnaphthacene multiple quantum wells,” Appl. Phys. Lett.81(19), 3540–3542 (2002).
[CrossRef]

Y. Qiu, Y. Gao, P. Wei, and L. Wang, “Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells,” Appl. Phys. Lett.80(15), 2628–2630 (2002).
[CrossRef]

Rass, J.

L. Schade, U. T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, and M. Kneissl, “On the optical polarization properties of semipolar InGaN quantum wells,” Appl. Phys. Lett.99(5), 051103 (2011).
[CrossRef]

Reineke, S.

S. Reineke, K. Walzer, and K. Leo, “Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters,” Phys. Rev. B75(12), 125328 (2007).
[CrossRef]

Roux, X. L.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett.99(14), 141106 (2011).
[CrossRef]

Ruden, A. V.

J. S. Swensen, E. Polikarpov, A. V. Ruden, L. Wang, L. S. Sapochak, and A. B. Padmaperuma, “Improved Efficiency in Blue Phosphorescent Organic Light-Emitting Devices Using Host Materials of Lower Triplet Energy than the Phosphorescent Blue Emitter,” Adv. Funct. Mater.21(17), 3250–3258 (2011).
[CrossRef]

Sakr, S.

A. Vardi, S. Sakr, J. Mangeney, P. K. Kandaswamy, E. Monroy, M. Tchernycheva, S. E. Schacham, F. H. Julien, and G. Bahir, “Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron,” Appl. Phys. Lett.99(20), 202111 (2011).
[CrossRef]

Salaneck, W. R.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, M. Lo, W. R. Salaneck, D. A. Dos Santos, and J. L. Bredas, “Electroluminescence in conjugated polymers,” Nature397(6715), 121–128 (1999).
[CrossRef]

Sapochak, L. S.

J. S. Swensen, E. Polikarpov, A. V. Ruden, L. Wang, L. S. Sapochak, and A. B. Padmaperuma, “Improved Efficiency in Blue Phosphorescent Organic Light-Emitting Devices Using Host Materials of Lower Triplet Energy than the Phosphorescent Blue Emitter,” Adv. Funct. Mater.21(17), 3250–3258 (2011).
[CrossRef]

Schacham, S. E.

A. Vardi, S. Sakr, J. Mangeney, P. K. Kandaswamy, E. Monroy, M. Tchernycheva, S. E. Schacham, F. H. Julien, and G. Bahir, “Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron,” Appl. Phys. Lett.99(20), 202111 (2011).
[CrossRef]

Schade, L.

L. Schade, U. T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, and M. Kneissl, “On the optical polarization properties of semipolar InGaN quantum wells,” Appl. Phys. Lett.99(5), 051103 (2011).
[CrossRef]

Schwarz, U. T.

L. Schade, U. T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, and M. Kneissl, “On the optical polarization properties of semipolar InGaN quantum wells,” Appl. Phys. Lett.99(5), 051103 (2011).
[CrossRef]

Scott, J. C.

G. G. Malliaras and J. C. Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys.83(10), 5399–5403 (1998).
[CrossRef]

Seo, J. H.

S. J. Lee, J. H. Seo, G. Y. Kim, and Y. K. Kim, “A Study on the Phosphorescent Blue Organic Light-Emitting Diodes Using Various Host Materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)507(1), 345–352 (2009).
[CrossRef]

Shen, Z.

Z. Shen, P. E. Burrows, V. Bulovic´, S. R. Forrest, and M. E. Thompson, “Three-Color, Tunable, Organic Light-Emitting Devices,” Science276(5321), 2009–2011 (1997).
[CrossRef]

Stehr, D.

M. Ortolani, D. Stehr, M. Wagner, M. Helm, G. Pizzi, M. Virgilio, G. Grosso, G. Capellini, and M. De Seta, “Long intersubband relaxation times in n-type germanium quantum wells,” Appl. Phys. Lett.99(20), 201101 (2011).
[CrossRef]

Su, S.

S. Su, T. Chiba, T. Takeda, and J. Kido, “Pyridine-Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2125–2130 (2008).
[CrossRef]

Swensen, J. S.

J. S. Swensen, E. Polikarpov, A. V. Ruden, L. Wang, L. S. Sapochak, and A. B. Padmaperuma, “Improved Efficiency in Blue Phosphorescent Organic Light-Emitting Devices Using Host Materials of Lower Triplet Energy than the Phosphorescent Blue Emitter,” Adv. Funct. Mater.21(17), 3250–3258 (2011).
[CrossRef]

Takeda, T.

S. Su, T. Chiba, T. Takeda, and J. Kido, “Pyridine-Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2125–2130 (2008).
[CrossRef]

Taliani, C.

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, M. Lo, W. R. Salaneck, D. A. Dos Santos, and J. L. Bredas, “Electroluminescence in conjugated polymers,” Nature397(6715), 121–128 (1999).
[CrossRef]

Tang, C. W.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
[CrossRef]

Tchernycheva, M.

A. Vardi, S. Sakr, J. Mangeney, P. K. Kandaswamy, E. Monroy, M. Tchernycheva, S. E. Schacham, F. H. Julien, and G. Bahir, “Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron,” Appl. Phys. Lett.99(20), 202111 (2011).
[CrossRef]

Thompson, M. E.

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

Z. Shen, P. E. Burrows, V. Bulovic´, S. R. Forrest, and M. E. Thompson, “Three-Color, Tunable, Organic Light-Emitting Devices,” Science276(5321), 2009–2011 (1997).
[CrossRef]

Tian, H.

B. C. Hen and C. S. Lee, EeS. T. Lee, E. E. P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, “Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials Time (µ s),” Jpn. J. Appl. Phys.39, 1190–1192 (2000).

Tung, Y. J.

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

VanSlyke, S. A.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
[CrossRef]

Vardi, A.

A. Vardi, S. Sakr, J. Mangeney, P. K. Kandaswamy, E. Monroy, M. Tchernycheva, S. E. Schacham, F. H. Julien, and G. Bahir, “Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron,” Appl. Phys. Lett.99(20), 202111 (2011).
[CrossRef]

Virgilio, M.

M. Ortolani, D. Stehr, M. Wagner, M. Helm, G. Pizzi, M. Virgilio, G. Grosso, G. Capellini, and M. De Seta, “Long intersubband relaxation times in n-type germanium quantum wells,” Appl. Phys. Lett.99(20), 201101 (2011).
[CrossRef]

Vivien, L.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett.99(14), 141106 (2011).
[CrossRef]

Wagner, M.

M. Ortolani, D. Stehr, M. Wagner, M. Helm, G. Pizzi, M. Virgilio, G. Grosso, G. Capellini, and M. De Seta, “Long intersubband relaxation times in n-type germanium quantum wells,” Appl. Phys. Lett.99(20), 201101 (2011).
[CrossRef]

Walzer, K.

S. Reineke, K. Walzer, and K. Leo, “Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters,” Phys. Rev. B75(12), 125328 (2007).
[CrossRef]

Wang, F.

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater.19(1), 84–95 (2009).
[CrossRef]

Wang, L.

J. S. Swensen, E. Polikarpov, A. V. Ruden, L. Wang, L. S. Sapochak, and A. B. Padmaperuma, “Improved Efficiency in Blue Phosphorescent Organic Light-Emitting Devices Using Host Materials of Lower Triplet Energy than the Phosphorescent Blue Emitter,” Adv. Funct. Mater.21(17), 3250–3258 (2011).
[CrossRef]

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater.19(1), 84–95 (2009).
[CrossRef]

Q. Wang, J. Ding, D. Ma, Y. Cheng, and L. Wang, “Highly efficient single-emitting-layer white organic light-emitting diodes with reduced efficiency roll-off,” Appl. Phys. Lett.94(10), 103503 (2009).
[CrossRef]

Y. Qiu, Y. Gao, P. Wei, and L. Wang, “Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells,” Appl. Phys. Lett.80(15), 2628–2630 (2002).
[CrossRef]

Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang, and G. Dong, “High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12-tetraphenylnaphthacene multiple quantum wells,” Appl. Phys. Lett.81(19), 3540–3542 (2002).
[CrossRef]

Wang, Q.

Q. Wang, J. Ding, D. Ma, Y. Cheng, and L. Wang, “Highly efficient single-emitting-layer white organic light-emitting diodes with reduced efficiency roll-off,” Appl. Phys. Lett.94(10), 103503 (2009).
[CrossRef]

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater.19(1), 84–95 (2009).
[CrossRef]

Webb, E. E. P.

B. C. Hen and C. S. Lee, EeS. T. Lee, E. E. P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, “Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials Time (µ s),” Jpn. J. Appl. Phys.39, 1190–1192 (2000).

Wei, P.

Y. Qiu, Y. Gao, P. Wei, and L. Wang, “Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells,” Appl. Phys. Lett.80(15), 2628–2630 (2002).
[CrossRef]

Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang, and G. Dong, “High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12-tetraphenylnaphthacene multiple quantum wells,” Appl. Phys. Lett.81(19), 3540–3542 (2002).
[CrossRef]

Wernicke, T.

L. Schade, U. T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, and M. Kneissl, “On the optical polarization properties of semipolar InGaN quantum wells,” Appl. Phys. Lett.99(5), 051103 (2011).
[CrossRef]

Weyers, M.

L. Schade, U. T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, and M. Kneissl, “On the optical polarization properties of semipolar InGaN quantum wells,” Appl. Phys. Lett.99(5), 051103 (2011).
[CrossRef]

Wong, K. T.

A. Chaskar, H. F. Chen, and K. T. Wong, “Bipolar host materials: a chemical approach for highly efficient electrophosphorescent devices,” Adv. Mater. (Deerfield Beach Fla.)23(34), 3876–3895 (2011).
[CrossRef] [PubMed]

Wu, J. P.

Wu, T. H.

Yang, C.

S. Gong, Y. Chen, J. Luo, C. Yang, C. Zhong, J. Qin, and D. Ma, “Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-Off,” Adv. Funct. Mater.21(6), 1168–1178 (2011).
[CrossRef]

Yang, K.

J. Huang, K. Yang, S. Liu, and H. Jiang, “High-brightness organic double-quantum-well electroluminescent devices,” Appl. Phys. Lett.77(12), 1750–1752 (2000).
[CrossRef]

Yook, K. S.

K. S. Yook and J. Y. Lee, “Solution processed high efficiency blue and white phosphorescent organic light-emitting diodes using a high triplet energy exciton blocking layer,” Org. Electron.12(8), 1293–1297 (2011).
[CrossRef]

K. S. Yook, S. E. Jang, S. O. Jeon, and J. Y. Lee, “Fabrication and Efficiency Improvement of Soluble Blue Phosphorescent Organic Light-Emitting Diodes Using a Multilayer Structure Based on an Alcohol-Soluble Blue Phosphorescent Emitting Layer,” Adv. Mater. (Deerfield Beach Fla.)22(40), 4479–4483 (2010).
[CrossRef] [PubMed]

Zhang, D.

L. Duan, D. Zhang, Y. Li, G. Zhang, and Y. Qiu, “Improving the performance of OLEDs by using a low-temperature-evaporable n-dopant and a high-mobility electron transport host,” Opt. Express19(S6Suppl 6), A1265–A1271 (2011).
[CrossRef] [PubMed]

Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang, and G. Dong, “High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12-tetraphenylnaphthacene multiple quantum wells,” Appl. Phys. Lett.81(19), 3540–3542 (2002).
[CrossRef]

Zhang, G.

Zhong, C.

S. Gong, Y. Chen, J. Luo, C. Yang, C. Zhong, J. Qin, and D. Ma, “Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-Off,” Adv. Funct. Mater.21(6), 1168–1178 (2011).
[CrossRef]

Zhu, W.

B. C. Hen and C. S. Lee, EeS. T. Lee, E. E. P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, “Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials Time (µ s),” Jpn. J. Appl. Phys.39, 1190–1192 (2000).

Adv. Funct. Mater. (3)

S. Gong, Y. Chen, J. Luo, C. Yang, C. Zhong, J. Qin, and D. Ma, “Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Roll-Off,” Adv. Funct. Mater.21(6), 1168–1178 (2011).
[CrossRef]

J. S. Swensen, E. Polikarpov, A. V. Ruden, L. Wang, L. S. Sapochak, and A. B. Padmaperuma, “Improved Efficiency in Blue Phosphorescent Organic Light-Emitting Devices Using Host Materials of Lower Triplet Energy than the Phosphorescent Blue Emitter,” Adv. Funct. Mater.21(17), 3250–3258 (2011).
[CrossRef]

Q. Wang, J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, and F. Wang, “Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis,” Adv. Funct. Mater.19(1), 84–95 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (5)

H. H. Chou and C. H. Cheng, “A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs,” Adv. Mater. (Deerfield Beach Fla.)22(22), 2468–2471 (2010).
[CrossRef] [PubMed]

B. W. D'Andrade and S. R. Forrest, “White Organic Light-Emitting Devices for Solid-State Lighting,” Adv. Mater. (Deerfield Beach Fla.)16(18), 1585–1595 (2004).
[CrossRef]

A. Chaskar, H. F. Chen, and K. T. Wong, “Bipolar host materials: a chemical approach for highly efficient electrophosphorescent devices,” Adv. Mater. (Deerfield Beach Fla.)23(34), 3876–3895 (2011).
[CrossRef] [PubMed]

K. S. Yook, S. E. Jang, S. O. Jeon, and J. Y. Lee, “Fabrication and Efficiency Improvement of Soluble Blue Phosphorescent Organic Light-Emitting Diodes Using a Multilayer Structure Based on an Alcohol-Soluble Blue Phosphorescent Emitting Layer,” Adv. Mater. (Deerfield Beach Fla.)22(40), 4479–4483 (2010).
[CrossRef] [PubMed]

S. Su, T. Chiba, T. Takeda, and J. Kido, “Pyridine-Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2125–2130 (2008).
[CrossRef]

Appl. Phys. Lett. (12)

Q. Wang, J. Ding, D. Ma, Y. Cheng, and L. Wang, “Highly efficient single-emitting-layer white organic light-emitting diodes with reduced efficiency roll-off,” Appl. Phys. Lett.94(10), 103503 (2009).
[CrossRef]

R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett.82(15), 2422–2424 (2003).
[CrossRef]

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett.51(12), 913–915 (1987).
[CrossRef]

M. Ortolani, D. Stehr, M. Wagner, M. Helm, G. Pizzi, M. Virgilio, G. Grosso, G. Capellini, and M. De Seta, “Long intersubband relaxation times in n-type germanium quantum wells,” Appl. Phys. Lett.99(20), 201101 (2011).
[CrossRef]

A. Vardi, S. Sakr, J. Mangeney, P. K. Kandaswamy, E. Monroy, M. Tchernycheva, S. E. Schacham, F. H. Julien, and G. Bahir, “Femto-second electron transit time characterization in GaN/AlGaN quantum cascade detector at 1.5 micron,” Appl. Phys. Lett.99(20), 202111 (2011).
[CrossRef]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett.99(14), 141106 (2011).
[CrossRef]

L. Schade, U. T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, and M. Kneissl, “On the optical polarization properties of semipolar InGaN quantum wells,” Appl. Phys. Lett.99(5), 051103 (2011).
[CrossRef]

Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang, and G. Dong, “High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12-tetraphenylnaphthacene multiple quantum wells,” Appl. Phys. Lett.81(19), 3540–3542 (2002).
[CrossRef]

Y. Qiu, Y. Gao, P. Wei, and L. Wang, “Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells,” Appl. Phys. Lett.80(15), 2628–2630 (2002).
[CrossRef]

J. Huang, K. Yang, S. Liu, and H. Jiang, “High-brightness organic double-quantum-well electroluminescent devices,” Appl. Phys. Lett.77(12), 1750–1752 (2000).
[CrossRef]

S. H. Kim, J. Jang, J. M. Hong, and J. Y. Lee, “High efficiency phosphorescent organic light emitting diodes using triplet quantum well structure,” Appl. Phys. Lett.90(17), 173501 (2007).
[CrossRef]

J. Lee, J. I. Lee, J. Y. Lee, and H. Y. Chu, “Improved performance of blue phosphorescent organic light-emitting diodes with a mixed host system,” Appl. Phys. Lett.95(25), 253304 (2009).
[CrossRef]

J. Appl. Phys. (1)

G. G. Malliaras and J. C. Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys.83(10), 5399–5403 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (1)

B. C. Hen and C. S. Lee, EeS. T. Lee, E. E. P. Webb, Y. C. Chan, W. Gambling, H. Tian, and W. Zhu, “Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials Time (µ s),” Jpn. J. Appl. Phys.39, 1190–1192 (2000).

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

S. J. Lee, J. H. Seo, G. Y. Kim, and Y. K. Kim, “A Study on the Phosphorescent Blue Organic Light-Emitting Diodes Using Various Host Materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)507(1), 345–352 (2009).
[CrossRef]

Nature (1)

R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, M. Lo, W. R. Salaneck, D. A. Dos Santos, and J. L. Bredas, “Electroluminescence in conjugated polymers,” Nature397(6715), 121–128 (1999).
[CrossRef]

Opt. Express (2)

Org. Electron. (2)

C. H. Hsiao, S. W. Liu, C. T. Chen, and J. H. Lee, “Emitting layer thickness dependence of color stability in phosphorescent organic light-emitting devices,” Org. Electron.11(9), 1500–1506 (2010).
[CrossRef]

K. S. Yook and J. Y. Lee, “Solution processed high efficiency blue and white phosphorescent organic light-emitting diodes using a high triplet energy exciton blocking layer,” Org. Electron.12(8), 1293–1297 (2011).
[CrossRef]

Phys. Rev. B (1)

S. Reineke, K. Walzer, and K. Leo, “Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters,” Phys. Rev. B75(12), 125328 (2007).
[CrossRef]

Science (1)

Z. Shen, P. E. Burrows, V. Bulovic´, S. R. Forrest, and M. E. Thompson, “Three-Color, Tunable, Organic Light-Emitting Devices,” Science276(5321), 2009–2011 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The energy-level diagram of blue phosphorescent OLED with MQW structure.

Fig. 2
Fig. 2

(a) Current density-voltage-brightness (J-V-B) curves in the MQW devices with different quantum well number. (b) External quantum efficiency (EQE) of the MQW devices at different brightness. (c) Power efficiency (PE) of the MQW devices at different brightness. (d) The EL spectrum of device 1, 2, 3, 4.

Fig. 3
Fig. 3

(a) Current density-voltage-brightness (J-V-B) characteristics for MQW device (Device 2) and control device (Device 5). (b) The EQE and power efficiency of MQW as a function of brightness.

Tables (1)

Tables Icon

Table 1 The performance of MQW device and control device.

Metrics