Abstract

A two-port polarization-insensitive single-mode fiber-silicon wire-waveguide coupler module, 5.3 × 3.4 × 0.7mm3 in size, is realized. The spot-size converter (SSC) involved utilizes a concatenated horizontal up-taper and vertical down-taper. Measured coupling losses between the fiber and the silicon-wire waveguide of the E11y and E11x modes of the SSC are 2.8 and 2.7 dB/port, respectively. The device platform is planar, robust, and easy to fabricate with conventional lithography.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Thourhout, and R. Baets, “Focusing polarization diversity gratings for Silicon- on-Insulator Integrated circuits,” in Proceedings of 5th International Conf. on Group IV Photonics (Sorrento, Italy, Sep. 2008), 200–202.
  2. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
    [CrossRef]
  3. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.36(6), 796–798 (2011).
    [CrossRef] [PubMed]
  4. T. Tsuchizawa, T. Watanabe, E. Tamechika, T. Shoji, K. Yamada, J. Takahashi, S. Uchiyama, S. Itabashi, and H. Morita, “Fabrication and evaluation of submicron-square Si wire waveguides with spot size converters,” in Proceedings of 15th Annual Meeting IEEE Lasers and Electro-Optics Society (Glasgow, Nov. 2002), 287–288.
  5. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]
  6. B. Bakir, A. Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (<1dB) and polarization- insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
    [CrossRef]
  7. J. Cardenas, K. Luke, L. W. Luo, C. B. Poitras, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon,” in Tech. Digest, CLEO, (San Jose CA, May 2012), paper JW4A10.
  8. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express11(26), 3555–3561 (2003).
    [CrossRef] [PubMed]
  9. K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett.91(14), 141120 (2007).
    [CrossRef]
  10. T. Lipka, A. Harke, O. Horn, J. Amthor, J. Muller, and M. Krause, “Amorphous silicon spot-size converters fabricated with a shadow mask,” in Proceedings of 5th International Conf. on Group IV Photonics (Sorrento, Italy, Sep. 2008), 311–313.
  11. H. Yoda, K. Shiraishi, A. Ohshima, T. Ishimura, H. Furuhashi, H. Tsuchiya, and C. Tsai, “A two-port single-mode fiber–silicon wire waveguide coupler module using spot-size converters,” J. Lightwave Technol.27(10), 1315–1319 (2009).
    [CrossRef]
  12. N. Fang, Z. Yang, A. Wu, J. Chen, M. Zhang, S. Zou, and X. Wang, “Three-dimensional tapered spot-size converter based on (111) silicon-on-insulator,” IEEE Photon. Technol. Lett.21(12), 820–822 (2009).
    [CrossRef]
  13. K. Shiraishi, H. Yoda, and C. S. Tsai, “Miniaturized spot size converters for coupling between single-mode optical fibers and silicon photonics circuits,” in Tech. Digest, 16th Microoptics Conference, (Hsinchu, Taiwan, Oct.-Nov., 2010), 60–61.
  14. For example,E. A. J. Marcatili, “Dielectric rectangular waveguide and dielectric coupler for integrated optics,” Bell Syst. Tech. J.48(7), 2071–2102 (1969).

2011 (2)

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.36(6), 796–798 (2011).
[CrossRef] [PubMed]

2010 (1)

B. Bakir, A. Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (<1dB) and polarization- insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

2009 (2)

H. Yoda, K. Shiraishi, A. Ohshima, T. Ishimura, H. Furuhashi, H. Tsuchiya, and C. Tsai, “A two-port single-mode fiber–silicon wire waveguide coupler module using spot-size converters,” J. Lightwave Technol.27(10), 1315–1319 (2009).
[CrossRef]

N. Fang, Z. Yang, A. Wu, J. Chen, M. Zhang, S. Zou, and X. Wang, “Three-dimensional tapered spot-size converter based on (111) silicon-on-insulator,” IEEE Photon. Technol. Lett.21(12), 820–822 (2009).
[CrossRef]

2007 (1)

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett.91(14), 141120 (2007).
[CrossRef]

2003 (2)

1969 (1)

For example,E. A. J. Marcatili, “Dielectric rectangular waveguide and dielectric coupler for integrated optics,” Bell Syst. Tech. J.48(7), 2071–2102 (1969).

Almeida, V. R.

Bakir, B.

B. Bakir, A. Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (<1dB) and polarization- insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

Chen, J.

N. Fang, Z. Yang, A. Wu, J. Chen, M. Zhang, S. Zou, and X. Wang, “Three-dimensional tapered spot-size converter based on (111) silicon-on-insulator,” IEEE Photon. Technol. Lett.21(12), 820–822 (2009).
[CrossRef]

Chen, X.

Dillon, T.

Dobbelaere, P. D.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Fang, N.

N. Fang, Z. Yang, A. Wu, J. Chen, M. Zhang, S. Zou, and X. Wang, “Three-dimensional tapered spot-size converter based on (111) silicon-on-insulator,” IEEE Photon. Technol. Lett.21(12), 820–822 (2009).
[CrossRef]

Fedeli, J.

B. Bakir, A. Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (<1dB) and polarization- insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

Furuhashi, H.

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Gyves, A.

B. Bakir, A. Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (<1dB) and polarization- insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

Ikedo, H.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett.91(14), 141120 (2007).
[CrossRef]

Ishimura, T.

Lin, C.

Lipson, M.

Lyan, P.

B. Bakir, A. Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (<1dB) and polarization- insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

Marcatili, E. A. J.

For example,E. A. J. Marcatili, “Dielectric rectangular waveguide and dielectric coupler for integrated optics,” Bell Syst. Tech. J.48(7), 2071–2102 (1969).

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Murakowski, J.

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Ohshima, A.

H. Yoda, K. Shiraishi, A. Ohshima, T. Ishimura, H. Furuhashi, H. Tsuchiya, and C. Tsai, “A two-port single-mode fiber–silicon wire waveguide coupler module using spot-size converters,” J. Lightwave Technol.27(10), 1315–1319 (2009).
[CrossRef]

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett.91(14), 141120 (2007).
[CrossRef]

Orobtchouk, R.

B. Bakir, A. Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (<1dB) and polarization- insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

Panepucci, R. R.

Pinguet, T.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Porzier, C.

B. Bakir, A. Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (<1dB) and polarization- insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

Prather, D.

Pustai, D.

Roman, A.

B. Bakir, A. Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (<1dB) and polarization- insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Shiraishi, K.

H. Yoda, K. Shiraishi, A. Ohshima, T. Ishimura, H. Furuhashi, H. Tsuchiya, and C. Tsai, “A two-port single-mode fiber–silicon wire waveguide coupler module using spot-size converters,” J. Lightwave Technol.27(10), 1315–1319 (2009).
[CrossRef]

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett.91(14), 141120 (2007).
[CrossRef]

Sure, A.

Tsai, C.

Tsai, C. S.

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett.91(14), 141120 (2007).
[CrossRef]

Tsang, H. K.

Tsuchiya, H.

Wang, X.

N. Fang, Z. Yang, A. Wu, J. Chen, M. Zhang, S. Zou, and X. Wang, “Three-dimensional tapered spot-size converter based on (111) silicon-on-insulator,” IEEE Photon. Technol. Lett.21(12), 820–822 (2009).
[CrossRef]

Wu, A.

N. Fang, Z. Yang, A. Wu, J. Chen, M. Zhang, S. Zou, and X. Wang, “Three-dimensional tapered spot-size converter based on (111) silicon-on-insulator,” IEEE Photon. Technol. Lett.21(12), 820–822 (2009).
[CrossRef]

Yang, Z.

N. Fang, Z. Yang, A. Wu, J. Chen, M. Zhang, S. Zou, and X. Wang, “Three-dimensional tapered spot-size converter based on (111) silicon-on-insulator,” IEEE Photon. Technol. Lett.21(12), 820–822 (2009).
[CrossRef]

Yoda, H.

H. Yoda, K. Shiraishi, A. Ohshima, T. Ishimura, H. Furuhashi, H. Tsuchiya, and C. Tsai, “A two-port single-mode fiber–silicon wire waveguide coupler module using spot-size converters,” J. Lightwave Technol.27(10), 1315–1319 (2009).
[CrossRef]

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett.91(14), 141120 (2007).
[CrossRef]

Zhang, M.

N. Fang, Z. Yang, A. Wu, J. Chen, M. Zhang, S. Zou, and X. Wang, “Three-dimensional tapered spot-size converter based on (111) silicon-on-insulator,” IEEE Photon. Technol. Lett.21(12), 820–822 (2009).
[CrossRef]

Zou, S.

N. Fang, Z. Yang, A. Wu, J. Chen, M. Zhang, S. Zou, and X. Wang, “Three-dimensional tapered spot-size converter based on (111) silicon-on-insulator,” IEEE Photon. Technol. Lett.21(12), 820–822 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

K. Shiraishi, H. Yoda, A. Ohshima, H. Ikedo, and C. S. Tsai, “A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers,” Appl. Phys. Lett.91(14), 141120 (2007).
[CrossRef]

Bell Syst. Tech. J. (1)

For example,E. A. J. Marcatili, “Dielectric rectangular waveguide and dielectric coupler for integrated optics,” Bell Syst. Tech. J.48(7), 2071–2102 (1969).

IEEE J. Sel. Top. Quantum Electron. (1)

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. Bakir, A. Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. Fedeli, “Low-loss (<1dB) and polarization- insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

N. Fang, Z. Yang, A. Wu, J. Chen, M. Zhang, S. Zou, and X. Wang, “Three-dimensional tapered spot-size converter based on (111) silicon-on-insulator,” IEEE Photon. Technol. Lett.21(12), 820–822 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (2)

Other (5)

F. Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Thourhout, and R. Baets, “Focusing polarization diversity gratings for Silicon- on-Insulator Integrated circuits,” in Proceedings of 5th International Conf. on Group IV Photonics (Sorrento, Italy, Sep. 2008), 200–202.

T. Tsuchizawa, T. Watanabe, E. Tamechika, T. Shoji, K. Yamada, J. Takahashi, S. Uchiyama, S. Itabashi, and H. Morita, “Fabrication and evaluation of submicron-square Si wire waveguides with spot size converters,” in Proceedings of 15th Annual Meeting IEEE Lasers and Electro-Optics Society (Glasgow, Nov. 2002), 287–288.

J. Cardenas, K. Luke, L. W. Luo, C. B. Poitras, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon,” in Tech. Digest, CLEO, (San Jose CA, May 2012), paper JW4A10.

T. Lipka, A. Harke, O. Horn, J. Amthor, J. Muller, and M. Krause, “Amorphous silicon spot-size converters fabricated with a shadow mask,” in Proceedings of 5th International Conf. on Group IV Photonics (Sorrento, Italy, Sep. 2008), 311–313.

K. Shiraishi, H. Yoda, and C. S. Tsai, “Miniaturized spot size converters for coupling between single-mode optical fibers and silicon photonics circuits,” in Tech. Digest, 16th Microoptics Conference, (Hsinchu, Taiwan, Oct.-Nov., 2010), 60–61.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic configuration of the spot-size converter (SSC) employing a horizontal up-taper and a vertical down-taper.

Fig. 2
Fig. 2

Calculated coupling losses between the SSCs and the SMF with MFD of 5.2μm versus Si-core thickness T2.

Fig. 3
Fig. 3

Configuration of shadow-mask for reactive-ion etching to fabricate vertical down tapers for the two-port coupler module.

Fig. 4
Fig. 4

Photographs of (a) the bird’s-eye-view of fabricated two-port module, 5.3 × 3.4 × 0.7mm3 in size, and (b) the expanded photo of the output end of the SSC.

Fig. 5
Fig. 5

Measured near-field intensity patterns of the Ey11 mode at the output end of the SSC at the wavelength 1.55μm. (a)The microscopic view and (b) the contour of the intensity distribution.

Fig. 6
Fig. 6

Measured near-field intensity patterns of the Ex11 mode at the output end of the SSC at the wavelength 1.55μm. (a) The microscopic view and (b) the contour of the intensity distribution.

Metrics