Abstract

We report a method to selectively fill arbitrary air holes of microstructured photonic crystal fibers with conductive materials through microsphere-assisted fabrication. A photonic crystal fiber with three of its air holes filled with gallium is fabricated and optically characterized. Further it is shown that nanomaterials such as carbon nanotube can be attached to the tip of the conductive channel through additional optical soldering post-processing.

© 2012 OSA

Full Article  |  PDF Article
Related Articles
Selective opening of airholes in photonic crystal fiber

Jian Ju, Hai Feng Xuan, Wei Jin, Shujing Liu, and Hoi Lut Ho
Opt. Lett. 35(23) 3886-3888 (2010)

Plasmonically enhanced optical transmission through a metalized nanostructured photonic crystal fiber taper

Hesam Edin Arabi, Marzieh Pournoury, Ji Hoon Park, Seongil Im, and Kyunghwan Oh
Opt. Lett. 36(11) 2029-2031 (2011)

Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell
Opt. Express 19(13) 12180-12189 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [Crossref] [PubMed]
  2. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  3. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466–468.
  4. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
    [Crossref] [PubMed]
  5. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
    [Crossref]
  6. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
    [Crossref]
  7. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
    [Crossref] [PubMed]
  8. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
    [Crossref]
  9. A. Bozolan, C. J. de Matos, C. M. B. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008).
    [Crossref] [PubMed]
  10. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
    [Crossref]
  11. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005).
    [Crossref] [PubMed]
  12. Y. Wang, S. Liu, X. Tan, and W. Jin, “Selective-fluid-filling technique of microstructured optical fibers,” J. Lightwave Technol. 28(22), 3193–3196 (2010).
  13. J. Canning, M. Stevenson, T. K. Yip, S. K. Lim, and C. Martelli, “White light sources based on multiple precision selective micro-filling of structured optical waveguides,” Opt. Express 16(20), 15700–15708 (2008).
    [Crossref] [PubMed]
  14. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
    [Crossref] [PubMed]
  15. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
    [Crossref]
  16. R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” Proc. SPIE 7946, 79460Z, 79460Z-8 (2011).
    [Crossref]
  17. J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
    [Crossref] [PubMed]
  18. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
    [Crossref] [PubMed]
  19. P. Kim and C. M. Lieber, “Nanotube nanotweezers,” Science 286(5447), 2148–2150 (1999).
    [Crossref] [PubMed]

2011 (1)

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” Proc. SPIE 7946, 79460Z, 79460Z-8 (2011).
[Crossref]

2010 (2)

2009 (1)

2008 (3)

2007 (1)

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

2006 (1)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

2005 (2)

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005).
[Crossref] [PubMed]

2004 (4)

2003 (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

1999 (1)

P. Kim and C. M. Lieber, “Nanotube nanotweezers,” Science 286(5447), 2148–2150 (1999).
[Crossref] [PubMed]

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Badding, J. V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Baril, N. F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Bartelt, H.

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” Proc. SPIE 7946, 79460Z, 79460Z-8 (2011).
[Crossref]

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Biancalana, F.

Bird, D.

Birks, T.

Bjarklev, A.

Bozolan, A.

Brückner, S.

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” Proc. SPIE 7946, 79460Z, 79460Z-8 (2011).
[Crossref]

Canning, J.

Carlsen, A.

Cordeiro, C. M. B.

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

de Matos, C. J.

Demokan, M.

Dos Santos, E. M.

Du, F.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

Eggleton, B. J.

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Folkenberg, J. R.

George, A.

Giessen, H.

Gissibl, T.

Gopalan, V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Gu, C.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Hansen, T. P.

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Ho, H.

Hoh, D.

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” Proc. SPIE 7946, 79460Z, 79460Z-8 (2011).
[Crossref]

Hoiby, P. E.

Hoo, Y.

Hou, J.

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[Crossref]

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Jensen, J. B.

Jin, W.

Joly, N.

Kim, P.

P. Kim and C. M. Lieber, “Nanotube nanotweezers,” Science 286(5447), 2148–2150 (1999).
[Crossref] [PubMed]

Knight, J.

Knight, J. C.

J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
[Crossref] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Kobelke, J.

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” Proc. SPIE 7946, 79460Z, 79460Z-8 (2011).
[Crossref]

Kuhlmey, B.

Kuhlmey, B. T.

Lieber, C. M.

P. Kim and C. M. Lieber, “Nanotube nanotweezers,” Science 286(5447), 2148–2150 (1999).
[Crossref] [PubMed]

Lim, S. K.

Liu, S.

Lu, Y.-Q.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

Maier, S.

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Martelli, C.

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Pedersen, L. H.

Pricking, S.

Riishede, J.

Russell, P.

Russell, P. St. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Sazio, P. J. A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Schuster, K.

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” Proc. SPIE 7946, 79460Z, 79460Z-8 (2011).
[Crossref]

Schwuchow, A.

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” Proc. SPIE 7946, 79460Z, 79460Z-8 (2011).
[Crossref]

Seballos, L.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Shi, C.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Sørensen, T.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Spittel, R.

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” Proc. SPIE 7946, 79460Z, 79460Z-8 (2011).
[Crossref]

Stevenson, M.

Tan, X.

Travers, J.

Vieweg, M.

Wadsworth, W.

Wang, Y.

Won, D. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Wu, D. C.

Wu, D. K. C.

Wu, S.-T.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

Xiao, L.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[Crossref]

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[Crossref]

Yip, T. K.

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Zhang, J. Z.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Zhang, Y.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Zhao, C.

Appl. Phys. Lett. (3)

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90(19), 193504 (2007).
[Crossref]

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. A, Pure Appl. Opt. (1)

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005).
[Crossref]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Proc. SPIE (1)

R. Spittel, D. Hoh, S. Brückner, A. Schwuchow, K. Schuster, J. Kobelke, and H. Bartelt, “Selective filling of metals into photonic crystal fibers,” Proc. SPIE 7946, 79460Z, 79460Z-8 (2011).
[Crossref]

Science (3)

P. Kim and C. M. Lieber, “Nanotube nanotweezers,” Science 286(5447), 2148–2150 (1999).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Other (1)

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466–468.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram illustrating the microsphere assisted selective filling process; (a) microspheres are used to temporally block the air holes of a PCF that need to be filled; (b) a layer of UV curable optical adhesive is deposited on the facet of the PCF; (c) assisting microspheres are removed to expose the selected air holes; (d) the PCF is immersed in a liquid for infiltration; temperature can be elevated and pressure can be applied to facilitate the filling.

Fig. 2
Fig. 2

Selective filling of a PCF with gallium (a) a microsphere was attached to a fiber taper using optical adhesive; (b) the microsphere was delivered to block an air hole of a PCF; (c)-(g) are a series of frames grabbed from a video showing that three air holes were blocked with microspheres; (h) optical adhesive was applied onto the PCF facet; the microspheres would later be removed to expose the air holes.

Fig. 3
Fig. 3

Gallium filled PCF (a) an optical micrograph showing a PCF with three air holes filled with gallium; (b) a scanning electron microscope image of the gallium filled PCF.

Fig. 4
Fig. 4

Optical characterization of the selectively filled PCF (a) Schematic diagram of the experimental setup; (b) image of the input end of the PCF showing a supercontinuum beam was focused at the center of the PCF; The three gallium-filled air holes can be seen due to strong scattering of the illuminating light provided by a separate white light source; (c) near field pattern observed at the output end of the PCF; (d) an image of the output end under white light illumination; in addition to the near field pattern of the supercontinuum the three filled holes can also be observed due to scattering of the illuminating light; (e) an image of the three filled holes at the output end under white light illumination when the input supercontinuum was blocked; (f) transmission measurement; blue: the spectrum of the supercontinuum after passing through the selectively filled PCF; green: reference spectrum measured before the supercontinuum was coupled into the fiber; red: transmission spectrum.

Fig. 5
Fig. 5

(a) Schematic diagram illustrating the optical soldering technique; (b) An optically soldered micro copper wire; (c) A micrograph showing a capillary glass filled with metal, and an approaching carbon nanotube carried by a fiber taper; (d) and (e) show electrostatic actuation of an optically soldered carbon nanotube before (d) and after (e) a voltage was applied.

Metrics