Abstract

In this paper we propose a time-variant photonic crystal, which can be formed by a stream of wave-length-scale microdroplets flowing through a microfluidic channel. The functionality stems from the photonic bandgap generated from the 1D periodic perturbation of refractive index. The periodicity, volume fraction and composition of both the dispersed and the continuous phases can be conveniently tuned in real time by hydrodynamic or pneumatic methods. By simulation, it is found that the time-variant nature of the proposed structure can induce an abnormal energy evolution, which is distinct from any existing photonic crystal structures. As a basic component for optofluidic systems, the droplet-based photonic crystal may find potential applications in light modulation and light confinement, and could be an ideal model for pursuing physical insights into time-variant optofluidic systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [Crossref]
  3. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
    [Crossref]
  4. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [Crossref] [PubMed]
  5. S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
    [Crossref] [PubMed]
  6. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
    [Crossref] [PubMed]
  7. B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
    [Crossref] [PubMed]
  8. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [Crossref] [PubMed]
  9. D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
    [Crossref] [PubMed]
  10. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
    [Crossref] [PubMed]
  11. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
    [Crossref] [PubMed]
  12. S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
    [Crossref] [PubMed]
  13. Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
    [Crossref] [PubMed]
  14. S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
    [Crossref]
  15. M. Mancuso, J. M. Goddard, and D. Erickson, “Nanoporous polymer ring resonators for biosensing,” Opt. Express 20(1), 245–255 (2012).
    [Crossref] [PubMed]
  16. X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
    [Crossref] [PubMed]
  17. Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun 3, 651 (2012).
    [Crossref] [PubMed]
  18. S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
    [Crossref] [PubMed]
  19. R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
    [Crossref] [PubMed]
  20. A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
    [PubMed]
  21. M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
    [Crossref] [PubMed]
  22. T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett. 86(18), 4163–4166 (2001).
    [Crossref] [PubMed]
  23. S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
    [Crossref]
  24. Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
    [Crossref] [PubMed]
  25. E. Um and J.-K. Park, “A microfluidic abacus channel for controlling the addition of droplets,” Lab Chip 9(2), 207–212 (2009).
    [Crossref] [PubMed]
  26. G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip 9(8), 1102–1109 (2009).
    [Crossref] [PubMed]
  27. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [Crossref] [PubMed]
  28. M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small 2(11), 1292–1298 (2006).
    [Crossref] [PubMed]
  29. L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett. 93(16), 164107 (2008).
    [Crossref]
  30. L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
    [Crossref] [PubMed]
  31. S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
    [Crossref] [PubMed]
  32. E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip 11(12), 2023–2029 (2011).
    [Crossref] [PubMed]
  33. L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter 5(14), 2708–2712 (2009).
    [Crossref]
  34. L. Shui, A. van den Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid. 11(1), 87–92 (2011).
    [Crossref]
  35. S. Xiong, Y. Yang, K. Mawatari, T. Kitamori, and A. Q. Liu, “Nano-optofluidic droplet via photonic crystal characters for bio-imaging and detection applications,” in The 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 1077–1079 (2011).
  36. P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
    [Crossref] [PubMed]
  37. E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A. 106(34), 14195–14200 (2009).
    [Crossref] [PubMed]
  38. M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip 12(12), 2146–2155 (2012).
    [Crossref] [PubMed]
  39. H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech. 23(1), 2–16 (1975).
    [Crossref]
  40. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 1995).
  41. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech: Norwood, MA, 2000).
  42. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  43. Carbon disulifide (CS2) sometimes can be used as infrared transparent solvent, whose transparent window mainly spans at wavelengths from 8 to16µm. We select it because of its high refractive index which is 1.628. The most popular infrared solvent is carbon tetrachloride (CCl4), which is transparent at all wavelength less than 12µm. Other infrared transparent solvents include tetrachloroethylene, chloroform, dimethylformamide, dioxane, cyclohexane and benzene.
  44. J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1999).
  45. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  46. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [Crossref] [PubMed]
  47. V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
    [Crossref] [PubMed]
  48. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1-2), 3–15 (1999).
    [Crossref]
  49. S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip 11(21), 3603–3608 (2011).
    [Crossref] [PubMed]
  50. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
    [Crossref]
  51. J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer 125(4), 687–692 (2003).
    [Crossref]
  52. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
    [Crossref] [PubMed]
  53. According to ideal gas law, a heat source at a fixed location will enlarge the volume of microbubbles as they flow through.
  54. J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett. 98(4), 044101 (2011).
    [Crossref]
  55. W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2×2 switch for reconfigurable optical circuit,” Lab Chip 11(14), 2397–2402 (2011).
    [Crossref] [PubMed]

2012 (4)

M. Mancuso, J. M. Goddard, and D. Erickson, “Nanoporous polymer ring resonators for biosensing,” Opt. Express 20(1), 245–255 (2012).
[Crossref] [PubMed]

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun 3, 651 (2012).
[Crossref] [PubMed]

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[Crossref] [PubMed]

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip 12(12), 2146–2155 (2012).
[Crossref] [PubMed]

2011 (9)

L. Shui, A. van den Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid. 11(1), 87–92 (2011).
[Crossref]

S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip 11(21), 3603–3608 (2011).
[Crossref] [PubMed]

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[Crossref]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett. 98(4), 044101 (2011).
[Crossref]

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2×2 switch for reconfigurable optical circuit,” Lab Chip 11(14), 2397–2402 (2011).
[Crossref] [PubMed]

E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip 11(12), 2023–2029 (2011).
[Crossref] [PubMed]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref] [PubMed]

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

2010 (3)

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (7)

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A. 106(34), 14195–14200 (2009).
[Crossref] [PubMed]

E. Um and J.-K. Park, “A microfluidic abacus channel for controlling the addition of droplets,” Lab Chip 9(2), 207–212 (2009).
[Crossref] [PubMed]

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip 9(8), 1102–1109 (2009).
[Crossref] [PubMed]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter 5(14), 2708–2712 (2009).
[Crossref]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

2008 (3)

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[Crossref] [PubMed]

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett. 93(16), 164107 (2008).
[Crossref]

2007 (6)

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref] [PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

2006 (5)

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
[Crossref] [PubMed]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small 2(11), 1292–1298 (2006).
[Crossref] [PubMed]

2005 (3)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[Crossref] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

2004 (3)

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[Crossref] [PubMed]

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
[Crossref] [PubMed]

Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

2003 (3)

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[Crossref]

J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer 125(4), 687–692 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2001 (1)

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett. 86(18), 4163–4166 (2001).
[Crossref] [PubMed]

1999 (2)

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1999).

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1-2), 3–15 (1999).
[Crossref]

1975 (1)

H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech. 23(1), 2–16 (1975).
[Crossref]

Abate, A. R.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Abell, C.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Agresti, J. J.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Almeida, V. R.

Anna, S. L.

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip 9(8), 1102–1109 (2009).
[Crossref] [PubMed]

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[Crossref]

Arnold, F. H.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett. 86(18), 4163–4166 (2001).
[Crossref] [PubMed]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Bergstein, J.

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip 9(8), 1102–1109 (2009).
[Crossref] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Bontoux, N.

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[Crossref]

Brinkmann, M.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[Crossref] [PubMed]

Brouzes, E.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A. 106(34), 14195–14200 (2009).
[Crossref] [PubMed]

Campbell, K.

Castro-Hernández, E.

E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip 11(12), 2023–2029 (2011).
[Crossref] [PubMed]

Chin, L. K.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun 3, 651 (2012).
[Crossref] [PubMed]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett. 93(16), 164107 (2008).
[Crossref]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Christopher, G. F.

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip 9(8), 1102–1109 (2009).
[Crossref] [PubMed]

Conroy, R. S.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[Crossref] [PubMed]

Courtois, F.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Cristini, V.

Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Cuennet, J. G.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[Crossref]

Dale, P. S.

De Sio, L.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[Crossref]

Dholakia, K.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[Crossref] [PubMed]

Dittrich, P. S.

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[Crossref] [PubMed]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Eijkel, J. C. T.

L. Shui, A. van den Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid. 11(1), 87–92 (2011).
[Crossref]

L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter 5(14), 2708–2712 (2009).
[Crossref]

End, N. B.

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip 9(8), 1102–1109 (2009).
[Crossref] [PubMed]

Erickson, D.

Fainman, Y.

Fan, S.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1999).

Fan, X.

Ferrera, J.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1999).

Fischbach, M. A.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[Crossref] [PubMed]

Fischlechner, M.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Fisher, J. S.

Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Forsi, J. S.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1999).

Garstecki, P.

S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip 11(21), 3603–3608 (2011).
[Crossref] [PubMed]

M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small 2(11), 1292–1298 (2006).
[Crossref] [PubMed]

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[Crossref] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1-2), 3–15 (1999).
[Crossref]

Gershenfeld, N.

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[Crossref] [PubMed]

Goddard, J. M.

Gordillo, J. M.

E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip 11(12), 2023–2029 (2011).
[Crossref] [PubMed]

Groisman, A.

Guo, M. T.

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip 12(12), 2146–2155 (2012).
[Crossref] [PubMed]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Hashimoto, M.

M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small 2(11), 1292–1298 (2006).
[Crossref] [PubMed]

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

Herminghaus, S.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[Crossref] [PubMed]

Heyman, J. A.

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip 12(12), 2146–2155 (2012).
[Crossref] [PubMed]

Hollfelder, F.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1-2), 3–15 (1999).
[Crossref]

Huang, T. J.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

Huck, W. T. S.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Hung, L. H.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[Crossref] [PubMed]

Hutchison, J. B.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A. 106(34), 14195–14200 (2009).
[Crossref] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Ippen, E. P.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1999).

Jakiela, S.

S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip 11(21), 3603–3608 (2011).
[Crossref] [PubMed]

Jian, A.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1999).

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Juluri, B. K.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

Jung, J.

J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer 125(4), 687–692 (2003).
[Crossref]

Kimerling, L. C.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1999).

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Kogelnik, H.

H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech. 23(1), 2–16 (1975).
[Crossref]

Kooij, E. S.

L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter 5(14), 2708–2712 (2009).
[Crossref]

Korczyk, P. M.

S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip 11(21), 3603–3608 (2011).
[Crossref] [PubMed]

Krauss, T. F.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[Crossref] [PubMed]

Kwak, H.

J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer 125(4), 687–692 (2003).
[Crossref]

Lapsley, M. I.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

Lee, A. I.

Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Lee, A. P.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[Crossref] [PubMed]

Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Lee, J.

J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer 125(4), 687–692 (2003).
[Crossref]

Levy, U.

Li, Z.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
[Crossref] [PubMed]

Lien, V.

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

Lim, C. S.

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett. 93(16), 164107 (2008).
[Crossref]

Lim, J.-M.

J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett. 98(4), 044101 (2011).
[Crossref]

Lin, C. L.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun 3, 651 (2012).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

Lin, R.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[Crossref] [PubMed]

Lin, S.-C. S.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

Link, D. R.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A. 106(34), 14195–14200 (2009).
[Crossref] [PubMed]

Lipson, M.

Liu, A. Q.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun 3, 651 (2012).
[Crossref] [PubMed]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett. 93(16), 164107 (2008).
[Crossref]

Lohse, D.

E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip 11(12), 2023–2029 (2011).
[Crossref] [PubMed]

Lu, C.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun 3, 651 (2012).
[Crossref] [PubMed]

MacDonald, M. P.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[Crossref] [PubMed]

Makulska, S.

S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip 11(21), 3603–3608 (2011).
[Crossref] [PubMed]

Mancuso, M.

Manz, A.

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[Crossref] [PubMed]

Mao, X.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

Marran, D.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A. 106(34), 14195–14200 (2009).
[Crossref] [PubMed]

Mayers, B.

M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small 2(11), 1292–1298 (2006).
[Crossref] [PubMed]

Mayers, B. T.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[Crossref] [PubMed]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Medkova, M.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A. 106(34), 14195–14200 (2009).
[Crossref] [PubMed]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Neale, S. L.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[Crossref] [PubMed]

Nguyen, C.

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip 9(8), 1102–1109 (2009).
[Crossref] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Ohta, A. T.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Panepucci, R. R.

Pang, L.

Park, H.

J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer 125(4), 687–692 (2003).
[Crossref]

Park, J.-K.

E. Um and J.-K. Park, “A microfluidic abacus channel for controlling the addition of droplets,” Lab Chip 9(2), 207–212 (2009).
[Crossref] [PubMed]

Paul, K. E.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[Crossref] [PubMed]

Perrimon, N.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A. 106(34), 14195–14200 (2009).
[Crossref] [PubMed]

Pfohl, T.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[Crossref] [PubMed]

Poon, M.

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip 9(8), 1102–1109 (2009).
[Crossref] [PubMed]

Prakash, M.

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[Crossref] [PubMed]

Prentiss, M.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[Crossref] [PubMed]

Psaltis, D.

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2×2 switch for reconfigurable optical circuit,” Lab Chip 11(14), 2397–2402 (2011).
[Crossref] [PubMed]

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[Crossref]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett. 86(18), 4163–4166 (2001).
[Crossref] [PubMed]

Roberts, R. W.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett. 86(18), 4163–4166 (2001).
[Crossref] [PubMed]

Rotem, A.

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip 12(12), 2146–2155 (2012).
[Crossref] [PubMed]

Rothberg, J. M.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A. 106(34), 14195–14200 (2009).
[Crossref] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Samuels, M. L.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A. 106(34), 14195–14200 (2009).
[Crossref] [PubMed]

Savenelli, N.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A. 106(34), 14195–14200 (2009).
[Crossref] [PubMed]

Schaerli, Y.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Scherer, A.

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15(22), 14322–14334 (2007).
[Crossref] [PubMed]

Schmidt, H.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

Seemann, R.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[Crossref] [PubMed]

Shi, J.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

Shopova, S. I.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Shui, L.

L. Shui, A. van den Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid. 11(1), 87–92 (2011).
[Crossref]

L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter 5(14), 2708–2712 (2009).
[Crossref]

Smith, H. I.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1999).

Soh, Y. C.

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett. 93(16), 164107 (2008).
[Crossref]

Song, W.

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2×2 switch for reconfigurable optical circuit,” Lab Chip 11(14), 2397–2402 (2011).
[Crossref] [PubMed]

Steinmeyer, G.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1999).

Stone, H. A.

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[Crossref]

Suter, J. D.

Tam, H. Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Tan, Y.-C.

Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Tang, S. K. Y.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

Teh, S. Y.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[Crossref] [PubMed]

Theberge, A. B.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Thoen, E. R.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1999).

Thorsen, T.

J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett. 98(4), 044101 (2011).
[Crossref]

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett. 86(18), 4163–4166 (2001).
[Crossref] [PubMed]

Tsai, D. P.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun 3, 651 (2012).
[Crossref] [PubMed]

Twardowski, M.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A. 106(34), 14195–14200 (2009).
[Crossref] [PubMed]

Um, E.

E. Um and J.-K. Park, “A microfluidic abacus channel for controlling the addition of droplets,” Lab Chip 9(2), 207–212 (2009).
[Crossref] [PubMed]

Urbanski, J. P.

J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett. 98(4), 044101 (2011).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

van den Berg, A.

L. Shui, A. van den Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid. 11(1), 87–92 (2011).
[Crossref]

van der Berg, A.

L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter 5(14), 2708–2712 (2009).
[Crossref]

van Hoeve, W.

E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip 11(12), 2023–2029 (2011).
[Crossref] [PubMed]

Vasdekis, A. E.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[Crossref]

Villeneuve, P. R.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1999).

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Vollmer, F.

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

Wang, G. P.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun 3, 651 (2012).
[Crossref] [PubMed]

Wang, Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Weitz, D. A.

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip 12(12), 2146–2155 (2012).
[Crossref] [PubMed]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

White, I. M.

Whitesides, G. M.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small 2(11), 1292–1298 (2006).
[Crossref] [PubMed]

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[Crossref] [PubMed]

Wijnperle, D.

L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter 5(14), 2708–2712 (2009).
[Crossref]

Wolfe, D. B.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[Crossref] [PubMed]

Wu, M. C.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

Xiong, S.

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref] [PubMed]

Xu, Q.

Yang, A. H.

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yang, S.-M.

J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett. 98(4), 044101 (2011).
[Crossref]

Yang, Y.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun 3, 651 (2012).
[Crossref] [PubMed]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1-2), 3–15 (1999).
[Crossref]

Zamek, S.

Zhang, J. B.

L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett. 93(16), 164107 (2008).
[Crossref]

Zhang, K.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Zhang, P.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Zhang, X.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Zhang, X. M.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun 3, 651 (2012).
[Crossref] [PubMed]

Zhang, Z.

Zheludev, N. I.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun 3, 651 (2012).
[Crossref] [PubMed]

Zhou, H.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Zhu, H.

Angew. Chem. Int. Ed. Engl. (1)

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl. 49(34), 5846–5868 (2010).
[PubMed]

Appl. Phys. Lett. (4)

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[Crossref]

L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett. 93(16), 164107 (2008).
[Crossref]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett. 98(4), 044101 (2011).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech. 23(1), 2–16 (1975).
[Crossref]

J. Heat Transfer (1)

J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer 125(4), 687–692 (2003).
[Crossref]

Lab Chip (14)

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip 11(21), 3603–3608 (2011).
[Crossref] [PubMed]

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2×2 switch for reconfigurable optical circuit,” Lab Chip 11(14), 2397–2402 (2011).
[Crossref] [PubMed]

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip 12(12), 2146–2155 (2012).
[Crossref] [PubMed]

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip 11(11), 1864–1869 (2011).
[Crossref] [PubMed]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip 9(14), 2050–2058 (2009).
[Crossref] [PubMed]

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[Crossref] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip 10(8), 1072–1078 (2010).
[Crossref] [PubMed]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[Crossref] [PubMed]

E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip 11(12), 2023–2029 (2011).
[Crossref] [PubMed]

Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

E. Um and J.-K. Park, “A microfluidic abacus channel for controlling the addition of droplets,” Lab Chip 9(2), 207–212 (2009).
[Crossref] [PubMed]

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip 9(8), 1102–1109 (2009).
[Crossref] [PubMed]

Microfluid. Nanofluid. (1)

L. Shui, A. van den Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid. 11(1), 87–92 (2011).
[Crossref]

Nat Commun (1)

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun 3, 651 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[Crossref] [PubMed]

Nat. Photonics (3)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics 5(10), 598–604 (2011).
[Crossref]

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[Crossref]

Nat. Rev. Drug Discov. (1)

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[Crossref] [PubMed]

Nature (7)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[Crossref] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1999).

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett. 86(18), 4163–4166 (2001).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A. 106(34), 14195–14200 (2009).
[Crossref] [PubMed]

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys. 75(1), 016601 (2012).
[Crossref] [PubMed]

Science (1)

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315(5813), 832–835 (2007).
[Crossref] [PubMed]

Sens. Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54(1-2), 3–15 (1999).
[Crossref]

Small (1)

M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small 2(11), 1292–1298 (2006).
[Crossref] [PubMed]

Soft Matter (1)

L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter 5(14), 2708–2712 (2009).
[Crossref]

Other (5)

S. Xiong, Y. Yang, K. Mawatari, T. Kitamori, and A. Q. Liu, “Nano-optofluidic droplet via photonic crystal characters for bio-imaging and detection applications,” in The 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 1077–1079 (2011).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 1995).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech: Norwood, MA, 2000).

Carbon disulifide (CS2) sometimes can be used as infrared transparent solvent, whose transparent window mainly spans at wavelengths from 8 to16µm. We select it because of its high refractive index which is 1.628. The most popular infrared solvent is carbon tetrachloride (CCl4), which is transparent at all wavelength less than 12µm. Other infrared transparent solvents include tetrachloroethylene, chloroform, dimethylformamide, dioxane, cyclohexane and benzene.

According to ideal gas law, a heat source at a fixed location will enlarge the volume of microbubbles as they flow through.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic illustration of droplet-based U-shape PC waveguide.

Fig. 2
Fig. 2

(a) Normal index-guiding waveguide. (b) Waveguide with periodic modulation of RI. (c) Linear dispersion curve in (a). (d) Splitting of the waveguide modes in (b).

Fig. 3
Fig. 3

The two-dimensional FDTD model and results of the TvPC structure. (a) The model of as-proposed droplet-based TvPC waveguide for calculation. (b) The empty waveguide model for reference. (c) The transmittance vs. frequency observed at the output point when the waveguide is excited at the light source point.

Fig. 4
Fig. 4

Energy evolution in droplet-based 1D TvPC. (a) The energy distributions in a finite TvPC at the 1st and the 2nd order waveguide modes, respectively. The waveguide is excited by a continuous source outside the left end of the channel. (b)-(e) The 1st and 2nd order energy distributions in an infinite 1D droplet-based TvPC at (b) t = 0, (c) t = T/4, (d) t = T/2 and (e) t = 3T/4, where T is the time period for the TvPC to restore. The dashed arrows indicate the evolution of electromagnetic energy, along with the flow of microbubbles.

Fig. 5
Fig. 5

Relationships between transmittance and lengths of microbubbles. (a) Schematic illustration of different microbubble sizes L. (b) The transmittance spectra of the 1D TvPC waveguide for different microbubble lengths, of 1.0a, 1.2a, 1.4a, 1.6a, respectively.

Fig. 6
Fig. 6

Relationships between transmittance and RI of continuous phase adopted in droplet-based 1D TvPCs (a) The transmittance of TvPC with different RIs, where center frequencies of the bandgaps are marked by orange triangles. (b) The center frequency of the bandgap as a function of RIs.

Fig. 7
Fig. 7

Light modulation at the bandedge frequency of the droplet-based 1D TvPC. (a) The energy evolution at the frequency f = 0.31c/a, in a time period T. (b) The transmission spectra of the waveguide at t = 0, t = T/4, t = T/2, t = 3T/4, respectively. (c) The transmittance modulation at f1 = c/a, f2 = 0.33c/a, respectively, as a function of time from 0 to 5T.

Fig. 8
Fig. 8

Relationships between defect lengths and defect mode frequencies. (a) Schematic models showing different defective TvPCs produced by inserting a longer liquid section at the center. The defect length d is defined to be the distance between two bubbles closest to the center. (b) The transmittance spectra of the defective TvPC, where the dashed arrows indicate the shifts of the defect mode by variation of d. (c) The plot of defect mode frequency as a function of defect length.

Fig. 9
Fig. 9

Behaviors of dynamic defects in droplet-based 1D TvPC. (a) Electromagnetic energy distribution in a defective TvPC waveguide at t = 2.5T, t = 3.5T, t = 4.5T, t = 5.5T and t = 6.5T, the defect length is 3.2a. The points with highest energy density are marked by orange triangles. (b) Transmittance spectra of the defective TvPC, where the defect mode peaks are clearly shown. (c) The transmittance at the defect mode frequency as a function of time, from 0 to 9T, the period for a dynamic defect to flow through the TvPC structure; blue circles are data points, and the red line is only guide for eyes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

× [n(x)] 2 × e ikr E k (x)= (ω(k)/c) 2 e ikr E k (x),
T= |E | 2 dl/ | E 0 | 2 dl,

Metrics