Abstract

We report the influence of higher order modes (HOMs) in large mode fibers operation in Q-switched oscillator configurations at ~2 μm wavelength. S2 measurements confirm guiding of LP11 and LP02 fiber modes in a large mode area (LMA) step-index fiber, whereas a prototype photonic crystal fiber (PCF) provides nearly single-mode performance with a small portion of light in the LP11 mode. The difference in HOM content leads to a significant difference in Q-switched oscillator performance. In the step-index fiber, the percentage of cladding light increases by 20% to >40% with increasing pulse energy to ~250 µJ. We accredit this degradation to saturation of the gain in the fundamental mode leading to more light generated in the HOMs, which is eventually converted into cladding light. No such degradation is seen in PCF laser system for >400 µJ energies.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. http://www.advaluephotonics.com/2-micron-fiber-laser-products.html
  2. http://www.npphotonics.com/
  3. http://www.nufern.com/pam/fiber_lasers/family/id/11/recnum/0/
  4. http://www.ipgphotonics.com/products_2micron_laser_cw.html
  5. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600 W Single-mode, single-frequency Thulium fiber laser amplifier,” Proc. SPIE 7195, 71950Y, 71950Y-10 (2009).
    [CrossRef]
  6. G. Imeshev and M. E. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
    [CrossRef] [PubMed]
  7. L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
    [CrossRef]
  8. C. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, and K. Tankala., “Effectively single-mode chirally-coupled-core fiber,” in OSA/ASSP. ME2 (2007).
  9. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  10. C. D. Brook and F. Di Teodoro, “Multimegawatt peak-power, single-tranverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
    [CrossRef]
  11. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, J. Limpert, and A. Tünnermann, “Fiber CPA system delivering 2.2 mJ, sub 500 fs pulses with 3.8 GW peak power,” in OSA/ASSP ATuD3 (2011).
  12. F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett. 37(6), 1073–1075 (2012).
    [CrossRef] [PubMed]
  13. http://www.nktphotonics.com/files/files/DC-200-40-PZ-Yb-03-110817.pdf \
  14. http://www.nufern.com/pam/optical_fibers/searchresult/id_category/3/recnum/0/
  15. K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
    [CrossRef]
  16. N. Modsching, P. Kadwani, R. A. Sims, L. Leick, J. Broeng, L. Shah, and M. Richardson, “Lasing in thulium-doped polarizing photonic crystal fiber,” Opt. Lett. 36(19), 3873–3875 (2011).
    [CrossRef] [PubMed]
  17. P. Kadwani, N. Modsching, R. A. Sims, L. Leick, J. Broeng, L. Shah, and M. Richardson, “Q-switched thulium-doped photonic crystal fiber laser,” Opt. Lett. 37(10), 1664–1666 (2012).
    [CrossRef] [PubMed]
  18. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
    [CrossRef] [PubMed]
  19. M. Eichhorn and S. D. Jackson, “High-pulse-energy actively Q-switched Tm3+-doped silica 2 microm fiber laser pumped at 792 nm,” Opt. Lett. 32(19), 2780–2782 (2007).
    [CrossRef] [PubMed]
  20. S. D. Jackson and S. Mossman, “Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers,” Appl. Opt. 42(15), 2702–2707 (2003).
    [CrossRef] [PubMed]
  21. G. P. Frith and D. G. Lancaster, “Power scalable and efficient 790-nm pumped Tm3+-doped fiber lasers,” Proc. SPIE 6102, 610208, 610208-10 (2006).
    [CrossRef]
  22. G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
    [CrossRef]
  23. D. L. Sipes, J. D. Tafoya, D. S. Schultz, B. G. Ward, and C. G. Carlson, “Advanced components for multi-kW fiber amplifiers,” Proc. SPIE 8237, 82370P, 82370P-6 (2012).
    [CrossRef]
  24. D. Creeden, P. A. Budni, P. A. Ketteridge, T. M. Pollak, E. P. Chicklis, G. Frith, and B. Samson, “High power pulse amplification in Tm-doped fiber,” in OSA/CLEO/QELS (2008)
  25. Y. Tang, L. Xu, Y. Yang, and J. Xu, “High-power gain-switched Tm3+-doped fiber laser,” Opt. Express 18(22), 22964–22972 (2010).
    [CrossRef] [PubMed]
  26. L. Shah, R. A. Sims, P. Kadwani, C. C. C. Willis, J. B. Bradford, A. Pung, M. Poutous, E. G. Johnson, and M. Richardson, “Integerated Tm:fiber MOPA with polarized output and narrow linewidth with 100 W average power,” Opt. Express 20(18), 20558 (2012).
    [CrossRef]

2012 (4)

2011 (1)

2010 (1)

2009 (2)

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600 W Single-mode, single-frequency Thulium fiber laser amplifier,” Proc. SPIE 7195, 71950Y, 71950Y-10 (2009).
[CrossRef]

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

2008 (2)

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[CrossRef]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16(10), 7233–7243 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (3)

C. D. Brook and F. Di Teodoro, “Multimegawatt peak-power, single-tranverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
[CrossRef]

G. P. Frith and D. G. Lancaster, “Power scalable and efficient 790-nm pumped Tm3+-doped fiber lasers,” Proc. SPIE 6102, 610208, 610208-10 (2006).
[CrossRef]

2005 (1)

2003 (1)

1996 (1)

Atkin, D. M.

Bass, M.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[CrossRef]

Birks, T. A.

Book, L. D.

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600 W Single-mode, single-frequency Thulium fiber laser amplifier,” Proc. SPIE 7195, 71950Y, 71950Y-10 (2009).
[CrossRef]

Bradford, J. B.

Broeng, J.

Brook, C. D.

C. D. Brook and F. Di Teodoro, “Multimegawatt peak-power, single-tranverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

Carlson, C. G.

D. L. Sipes, J. D. Tafoya, D. S. Schultz, B. G. Ward, and C. G. Carlson, “Advanced components for multi-kW fiber amplifiers,” Proc. SPIE 8237, 82370P, 82370P-6 (2012).
[CrossRef]

Carter, A.

K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
[CrossRef]

Chen, M. Y.

K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
[CrossRef]

Chen, Y.

K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
[CrossRef]

Di Teodoro, F.

C. D. Brook and F. Di Teodoro, “Multimegawatt peak-power, single-tranverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

Dong, L.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Eichhorn, M.

Farroni, J.

K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
[CrossRef]

Fermann, M. E.

Frith, G. P.

G. P. Frith and D. G. Lancaster, “Power scalable and efficient 790-nm pumped Tm3+-doped fiber lasers,” Proc. SPIE 6102, 610208, 610208-10 (2006).
[CrossRef]

Fu, L.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Galvanauskas, A.

K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
[CrossRef]

Ghalmi, S.

Goodno, G. D.

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600 W Single-mode, single-frequency Thulium fiber laser amplifier,” Proc. SPIE 7195, 71950Y, 71950Y-10 (2009).
[CrossRef]

Imeshev, G.

Jackson, S. D.

Jacobson, N.

K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
[CrossRef]

Jansen, F.

Jauregui, C.

Johnson, E. G.

Kadwani, P.

Knight, J. C.

Lancaster, D. G.

G. P. Frith and D. G. Lancaster, “Power scalable and efficient 790-nm pumped Tm3+-doped fiber lasers,” Proc. SPIE 6102, 610208, 610208-10 (2006).
[CrossRef]

Leick, L.

Li, J.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Liem, A.

Limpert, J.

Machewirth, D.

K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
[CrossRef]

Manyam, U.

K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
[CrossRef]

McKay, H. A.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Modsching, N.

Mossman, S.

Nicholson, J. W.

Poutous, M.

Pung, A.

Ramachandran, S.

Richardson, M.

Rothenberg, J. E.

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600 W Single-mode, single-frequency Thulium fiber laser amplifier,” Proc. SPIE 7195, 71950Y, 71950Y-10 (2009).
[CrossRef]

Russell, P. St. J.

Samson, B.

K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
[CrossRef]

Sanchez, A.

K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
[CrossRef]

Schultz, D. S.

D. L. Sipes, J. D. Tafoya, D. S. Schultz, B. G. Ward, and C. G. Carlson, “Advanced components for multi-kW fiber amplifiers,” Proc. SPIE 8237, 82370P, 82370P-6 (2012).
[CrossRef]

Shah, L.

Sims, R. A.

Sipes, D. L.

D. L. Sipes, J. D. Tafoya, D. S. Schultz, B. G. Ward, and C. G. Carlson, “Advanced components for multi-kW fiber amplifiers,” Proc. SPIE 8237, 82370P, 82370P-6 (2012).
[CrossRef]

Stutzki, F.

Sudesh, V.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[CrossRef]

Tafoya, J. D.

D. L. Sipes, J. D. Tafoya, D. S. Schultz, B. G. Ward, and C. G. Carlson, “Advanced components for multi-kW fiber amplifiers,” Proc. SPIE 8237, 82370P, 82370P-6 (2012).
[CrossRef]

Tang, Y.

Tankala, K.

K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
[CrossRef]

Toncelli, A.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[CrossRef]

Tonelli, M.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[CrossRef]

Torruellas, W.

K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
[CrossRef]

Tünnermann, A.

Turri, G.

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[CrossRef]

Ward, B. G.

D. L. Sipes, J. D. Tafoya, D. S. Schultz, B. G. Ward, and C. G. Carlson, “Advanced components for multi-kW fiber amplifiers,” Proc. SPIE 8237, 82370P, 82370P-6 (2012).
[CrossRef]

Willis, C. C. C.

Winful, H. G.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Wu, T.

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

Xu, J.

Xu, L.

Yablon, A. D.

Yang, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. D. Brook and F. Di Teodoro, “Multimegawatt peak-power, single-tranverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[CrossRef]

J. Appl. Phys. (1)

G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Proc. SPIE (4)

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600 W Single-mode, single-frequency Thulium fiber laser amplifier,” Proc. SPIE 7195, 71950Y, 71950Y-10 (2009).
[CrossRef]

D. L. Sipes, J. D. Tafoya, D. S. Schultz, B. G. Ward, and C. G. Carlson, “Advanced components for multi-kW fiber amplifiers,” Proc. SPIE 8237, 82370P, 82370P-6 (2012).
[CrossRef]

K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Y. Chen, A. Galvanauskas, W. Torruellas, and Y. Chen, “New developments in high power eye-safe LMA fibers,” Proc. SPIE 6102, 610206, 610206-9 (2006).
[CrossRef]

G. P. Frith and D. G. Lancaster, “Power scalable and efficient 790-nm pumped Tm3+-doped fiber lasers,” Proc. SPIE 6102, 610208, 610208-10 (2006).
[CrossRef]

Other (9)

C. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, and K. Tankala., “Effectively single-mode chirally-coupled-core fiber,” in OSA/ASSP. ME2 (2007).

D. Creeden, P. A. Budni, P. A. Ketteridge, T. M. Pollak, E. P. Chicklis, G. Frith, and B. Samson, “High power pulse amplification in Tm-doped fiber,” in OSA/CLEO/QELS (2008)

T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, J. Limpert, and A. Tünnermann, “Fiber CPA system delivering 2.2 mJ, sub 500 fs pulses with 3.8 GW peak power,” in OSA/ASSP ATuD3 (2011).

http://www.nktphotonics.com/files/files/DC-200-40-PZ-Yb-03-110817.pdf \

http://www.nufern.com/pam/optical_fibers/searchresult/id_category/3/recnum/0/

http://www.advaluephotonics.com/2-micron-fiber-laser-products.html

http://www.npphotonics.com/

http://www.nufern.com/pam/fiber_lasers/family/id/11/recnum/0/

http://www.ipgphotonics.com/products_2micron_laser_cw.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) The end facet and typical refractive index profile for the Tm-doped photonic crystal fiber (not to scale) with an effective NA of ~0.04. b) The end facet and refractive index profile for a Tm-doped LMA fiber with a refractive index and 0.1 core NA.

Fig. 2
Fig. 2

S2 data revealing guided mode content around wavelengths of 2 µm: a) PM-LMA fiber, and b) PCF.

Fig. 3
Fig. 3

a) The Tm:PCF with diameter to pitch ratio of 0.18 was used for the experiments. b) Q-switched laser oscillator schematic. The two fiber types Tm: PCF and Tm: LMA were exchanged while keeping all other components the same for comparative testing. (AOM: Acousto-optic modulator, HWP: Half wave plate, PBS: Polarizing beam splitter).

Fig. 4
Fig. 4

The top two plots show the total average output power slope efficiency for a) LMA fiber oscillator and b) PCF oscillator. These are compared to the usable polarized output power c) LMA fiber oscillator and d) PCF oscillator. All the above measurements are shown for 10 and 20 kHz repetition rate.

Fig. 5
Fig. 5

The usable output in the core as a percentage of total power (core + cladding) with respect to pulse energy obtained for a) LMA fiber and b) PCF at 10, 20 and 50 kHz repetition rates.

Fig. 6
Fig. 6

Evolution of pulse duration with absorbed pump for a) LMA and b) PCF at different repetition rates.

Metrics