Abstract

A strain-balanced, AlInAs/InGaAs/InP quantum cascade laser structure, designed for light emission near 9µm, was grown by molecular beam epitaxy. Laser devices were processed in buried heterostructure geometry. Maximum pulsed and continuous wave room temperature optical power of 4.5 and 2W and wallplug efficiency of 16% and 10%, respectively, were demonstrated for a 3mm by 10µm laser mounted epi-side down on an AlN/SiC composite submount. Pulsed laser characteristics were shown to be self-consistently described by a simple model based on rate equations using measured 70% injection efficiency for the upper laser level.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
    [CrossRef] [PubMed]
  2. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
    [CrossRef]
  3. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-µm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107, 18801 (2010).
  4. N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3.76 µm,” Appl. Phys. Lett.97(13), 131117 (2010).
    [CrossRef]
  5. D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101 (2010).
    [CrossRef]
  6. M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (λ>6 µm),” Opt. Eng.49(11), 111106 (2010).
    [CrossRef]
  7. M. Razeghi, “High-perfomance InP-based Mid-IR quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron.15(3), 941–951 (2009).
    [CrossRef]
  8. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
    [CrossRef]
  9. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
    [CrossRef]
  10. Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Very high wall plug efficiency of quantum cascade lasers,” Proc. of SPIE vol. 7608, 76080F (2010)
  11. R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express19(18), 17203–17211 (2011).
    [CrossRef] [PubMed]
  12. C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron.34(9), 1722–1729 (1998).
    [CrossRef]
  13. J. Faist, C. Sirtori, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power long-wavelength (λ~11.5 µm) quantum cascade lasers operating above room temperature,” IEEE Photon. Technol. Lett.10(8), 1100–1102 (1998).
    [CrossRef]
  14. R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys.12(3), 033045 (2010).
    [CrossRef]

2012

2011

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express19(18), 17203–17211 (2011).
[CrossRef] [PubMed]

2010

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys.12(3), 033045 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-µm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107, 18801 (2010).

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3.76 µm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101 (2010).
[CrossRef]

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (λ>6 µm),” Opt. Eng.49(11), 111106 (2010).
[CrossRef]

2009

M. Razeghi, “High-perfomance InP-based Mid-IR quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron.15(3), 941–951 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

1998

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron.34(9), 1722–1729 (1998).
[CrossRef]

J. Faist, C. Sirtori, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power long-wavelength (λ~11.5 µm) quantum cascade lasers operating above room temperature,” IEEE Photon. Technol. Lett.10(8), 1100–1102 (1998).
[CrossRef]

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3.76 µm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

Baillargeon, J. N.

J. Faist, C. Sirtori, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power long-wavelength (λ~11.5 µm) quantum cascade lasers operating above room temperature,” IEEE Photon. Technol. Lett.10(8), 1100–1102 (1998).
[CrossRef]

Bandyopadhyay, N.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3.76 µm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

Botez, D.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101 (2010).
[CrossRef]

Capasso, F.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-µm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107, 18801 (2010).

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

J. Faist, C. Sirtori, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power long-wavelength (λ~11.5 µm) quantum cascade lasers operating above room temperature,” IEEE Photon. Technol. Lett.10(8), 1100–1102 (1998).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron.34(9), 1722–1729 (1998).
[CrossRef]

Cho, A. Y.

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron.34(9), 1722–1729 (1998).
[CrossRef]

J. Faist, C. Sirtori, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power long-wavelength (λ~11.5 µm) quantum cascade lasers operating above room temperature,” IEEE Photon. Technol. Lett.10(8), 1100–1102 (1998).
[CrossRef]

Diehl, L.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-µm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107, 18801 (2010).

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

Faist, J.

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys.12(3), 033045 (2010).
[CrossRef]

J. Faist, C. Sirtori, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power long-wavelength (λ~11.5 µm) quantum cascade lasers operating above room temperature,” IEEE Photon. Technol. Lett.10(8), 1100–1102 (1998).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron.34(9), 1722–1729 (1998).
[CrossRef]

Fan, J.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (λ>6 µm),” Opt. Eng.49(11), 111106 (2010).
[CrossRef]

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-µm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107, 18801 (2010).

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Gokden, B.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3.76 µm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

Hutchinson, A. L.

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron.34(9), 1722–1729 (1998).
[CrossRef]

J. Faist, C. Sirtori, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power long-wavelength (λ~11.5 µm) quantum cascade lasers operating above room temperature,” IEEE Photon. Technol. Lett.10(8), 1100–1102 (1998).
[CrossRef]

Kumar, S.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101 (2010).
[CrossRef]

Lyakh, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express19(18), 17203–17211 (2011).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-µm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107, 18801 (2010).

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express19(18), 17203–17211 (2011).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-µm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107, 18801 (2010).

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

Mawst, L. J.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101 (2010).
[CrossRef]

Meyer, J. R.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101 (2010).
[CrossRef]

Myzaferi, A.

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3.76 µm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

Patel, C. K. N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express19(18), 17203–17211 (2011).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-µm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107, 18801 (2010).

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

Pflugl, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-µm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107, 18801 (2010).

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Pflügl, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

Razeghi, M.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3.76 µm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

M. Razeghi, “High-perfomance InP-based Mid-IR quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron.15(3), 941–951 (2009).
[CrossRef]

Shin, J. C.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101 (2010).
[CrossRef]

Sirtori, C.

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron.34(9), 1722–1729 (1998).
[CrossRef]

J. Faist, C. Sirtori, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power long-wavelength (λ~11.5 µm) quantum cascade lasers operating above room temperature,” IEEE Photon. Technol. Lett.10(8), 1100–1102 (1998).
[CrossRef]

Sivco, D. L.

J. Faist, C. Sirtori, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power long-wavelength (λ~11.5 µm) quantum cascade lasers operating above room temperature,” IEEE Photon. Technol. Lett.10(8), 1100–1102 (1998).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron.34(9), 1722–1729 (1998).
[CrossRef]

Slivken, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3.76 µm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

Terazzi, R.

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys.12(3), 033045 (2010).
[CrossRef]

Troccoli, M.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (λ>6 µm),” Opt. Eng.49(11), 111106 (2010).
[CrossRef]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3.76 µm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

Tsekoun, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express19(18), 17203–17211 (2011).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-µm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107, 18801 (2010).

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

Von der Porten, S.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-µm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107, 18801 (2010).

Vurgaftman, I.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101 (2010).
[CrossRef]

Wang, Q. J.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

Wang, X.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (λ>6 µm),” Opt. Eng.49(11), 111106 (2010).
[CrossRef]

Appl. Phys. Lett.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3.76 µm,” Appl. Phys. Lett.97(13), 131117 (2010).
[CrossRef]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101 (2010).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

IEEE J. Quantum Electron.

C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron.34(9), 1722–1729 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Razeghi, “High-perfomance InP-based Mid-IR quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron.15(3), 941–951 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Faist, C. Sirtori, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power long-wavelength (λ~11.5 µm) quantum cascade lasers operating above room temperature,” IEEE Photon. Technol. Lett.10(8), 1100–1102 (1998).
[CrossRef]

New J. Phys.

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys.12(3), 033045 (2010).
[CrossRef]

Opt. Eng.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (λ>6 µm),” Opt. Eng.49(11), 111106 (2010).
[CrossRef]

Opt. Express

Proc. Natl. Acad. Sci. U.S.A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-µm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107, 18801 (2010).

Other

Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Very high wall plug efficiency of quantum cascade lasers,” Proc. of SPIE vol. 7608, 76080F (2010)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Band diagram of a quantum cascade laser structure based on In0.58Ga0.42As/Al0.64In0.36As composition and designed using non-resonant extraction principle for light emission at 9 μm.

Fig. 2
Fig. 2

(a) Electroluminescence spectra of a round mesa at threshold and roll-over voltages (298K); (b) Dependence of electroluminescence linewidth on voltage.

Fig. 3
Fig. 3

Comparison between pulsed and CW total optical power vs current and voltage vs current characteristics measured at 293K for an uncoated 3mm by 10µm laser mounted epi-down on a AlN/SiC composite submount. Inset shows pulsed laser spectrum taken at maximum current.

Fig. 4
Fig. 4

Dependence of slope efficiency (a) and threshold current density (b) on cavity length. The two linear fits resulted in the following set of parameters: ηi = 70%, αw = 1.6cm−1, g = 14cm/kA, and Jtr = 1.3kA/cm2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

dP dI hυ q N s α m α m + α w 1 1+ τ 3 τ 4 η i
J th = J tr + α m + α w Γg
g( λ )= 4πe ε 0 nλ L p η i τ 4 ( 1 τ 3 τ 43 ) z 4f 2 ( γ 4f 2 ) ( E 4f hν ) 2 + ( γ 4f 2 ) 2
J tr = e η i τ 4 (1 τ 3 / τ 43 ) n 3,therm
n 3,therm = n s e Δ inj 2kT sinh( Δ inj 2 N inj kT ) sinh( ( N inj +1) Δ inj 2 N inj kT )
J max =e n s 2 Ω 2 τ 1+4 Ω 2 τ 4 τ ,

Metrics