Abstract

A variety of synthetic-aperture ladar (SAL) imaging techniques are investigated on a table-top laboratory setup using an ultra-broad bandwidth (>3 THz) actively linearized chirp laser centered at 1.55 microns. Stripmap and spotlight mode demonstrations of SAL in monstatic and bistatic geometries are presented. Interferometric SAL for 3D topographical relief imaging is demonstrated highlighting the coherent properties of the SAL imaging technique.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bashkansky, “Synthetic aperture imaging at 1.5μ: laboratory demonstration and potential application to planet surface studies,” in Proc. SPIE, 4849, 48–56 (2002).
  2. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt.44(35), 7621–7629 (2005).
    [CrossRef] [PubMed]
  3. B. D. Duncan and M. P. Dierking, “Holographic aperture ladar,” Appl. Opt.48(6), 1168 (2009).
    [CrossRef]
  4. W. Glastre, O. Jacquin, O. Hugon, H. Guillet de Chatellus, and E. Lacot, “Synthetic aperture laser optical feedback imaging using a translational scanning with galvanometric mirrors,” J. Opt. Soc. Am. A29(8), 1639–1647 (2012).
    [CrossRef]
  5. P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett.34(23), 3692–3694 (2009).
    [CrossRef] [PubMed]
  6. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar Signal Processing Algorithms (Artech House, 1995).
  7. C. V. Jakowatz, D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson, Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach (Springer, 1996).
  8. B. W. Krause, J. Buck, C. Ryan, D. Hwang, P. Kondratko, A. Malm, A. Gleason, and S. Ashby, “Synthetic aperture ladar flight demonstration,” in 2011 Conf. on Lasers and Electro-Optics (IEEE, 2011), 1–2.W.
  9. J. L. Walker, “Range-doppler imaging of rotating objects,” IEEE Trans. Aerosp. Electron. Syst.16(1), 23–52 (1980).
    [CrossRef]
  10. D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and J. C. V. Jakowatz, “Phase gradient autofocus-a robust tool for high resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst.30(3), 827–835 (1994).
  11. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley-Interscience, 1998).
  12. http://www.mathworks.com/matlabcentral/fileexchange/25154-costantini-phase-unwrapping , B. Luong (2009)
  13. M. Costantini, “A novel phase unwrapping method based on network programming,” IEEE Trans. Geosci. Rem. Sens.36(3), 813–821 (1998).
    [CrossRef]
  14. D. Yocky, D. Wahl, and C. Jakowatz, Jr., “Spotlight-mode SAR image formation utilizing the chirp Z-transform in two dimensions,” in IEEE 2006 Int. Conf. on Geosci. and Remote Sens. Symp. (2006), 4180 –4182.
  15. G. Krieger, M. Younis, S. Huber, F. Bordoni, A. Patyuchenko, J. Kim, P. Laskowski, M. Villano, T. Rommel, P. Lopez-Dekker, and A. Moreira, “Digital beamforming and MIMO SAR: Review and new concepts,” 9th European Conf. on Synthetic Aperture Radar, 2012. EUSAR 11 –14 (2012).
  16. A. K. Mishra and B. Mulgrew, “Bistatic SAR ATR,” IET Radar, Sonar Navigation1(6), 459–469 (2007).
    [CrossRef]

2012 (1)

2009 (2)

2007 (1)

A. K. Mishra and B. Mulgrew, “Bistatic SAR ATR,” IET Radar, Sonar Navigation1(6), 459–469 (2007).
[CrossRef]

2005 (1)

1998 (1)

M. Costantini, “A novel phase unwrapping method based on network programming,” IEEE Trans. Geosci. Rem. Sens.36(3), 813–821 (1998).
[CrossRef]

1994 (1)

D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and J. C. V. Jakowatz, “Phase gradient autofocus-a robust tool for high resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst.30(3), 827–835 (1994).

1980 (1)

J. L. Walker, “Range-doppler imaging of rotating objects,” IEEE Trans. Aerosp. Electron. Syst.16(1), 23–52 (1980).
[CrossRef]

Babbitt, W. R.

Barber, Z. W.

Beck, S. M.

Berg, T.

Buck, J. R.

Buell, W. F.

Costantini, M.

M. Costantini, “A novel phase unwrapping method based on network programming,” IEEE Trans. Geosci. Rem. Sens.36(3), 813–821 (1998).
[CrossRef]

Dickinson, R. P.

Dierking, M. P.

Duncan, B. D.

Eichel, P. H.

D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and J. C. V. Jakowatz, “Phase gradient autofocus-a robust tool for high resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst.30(3), 827–835 (1994).

Ghiglia, D. C.

D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and J. C. V. Jakowatz, “Phase gradient autofocus-a robust tool for high resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst.30(3), 827–835 (1994).

Glastre, W.

Guillet de Chatellus, H.

Hugon, O.

Jacquin, O.

Jakowatz, J. C. V.

D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and J. C. V. Jakowatz, “Phase gradient autofocus-a robust tool for high resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst.30(3), 827–835 (1994).

Kaylor, B.

Kozlowski, D. A.

Lacot, E.

Marechal, N. J.

Mishra, A. K.

A. K. Mishra and B. Mulgrew, “Bistatic SAR ATR,” IET Radar, Sonar Navigation1(6), 459–469 (2007).
[CrossRef]

Mulgrew, B.

A. K. Mishra and B. Mulgrew, “Bistatic SAR ATR,” IET Radar, Sonar Navigation1(6), 459–469 (2007).
[CrossRef]

Reibel, R. R.

Roos, P. A.

Wahl, D. E.

D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and J. C. V. Jakowatz, “Phase gradient autofocus-a robust tool for high resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst.30(3), 827–835 (1994).

Walker, J. L.

J. L. Walker, “Range-doppler imaging of rotating objects,” IEEE Trans. Aerosp. Electron. Syst.16(1), 23–52 (1980).
[CrossRef]

Wright, T. J.

Appl. Opt. (2)

IEEE Trans. Aerosp. Electron. Syst. (2)

J. L. Walker, “Range-doppler imaging of rotating objects,” IEEE Trans. Aerosp. Electron. Syst.16(1), 23–52 (1980).
[CrossRef]

D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and J. C. V. Jakowatz, “Phase gradient autofocus-a robust tool for high resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst.30(3), 827–835 (1994).

IEEE Trans. Geosci. Rem. Sens. (1)

M. Costantini, “A novel phase unwrapping method based on network programming,” IEEE Trans. Geosci. Rem. Sens.36(3), 813–821 (1998).
[CrossRef]

IET Radar, Sonar Navigation (1)

A. K. Mishra and B. Mulgrew, “Bistatic SAR ATR,” IET Radar, Sonar Navigation1(6), 459–469 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Other (8)

M. Bashkansky, “Synthetic aperture imaging at 1.5μ: laboratory demonstration and potential application to planet surface studies,” in Proc. SPIE, 4849, 48–56 (2002).

D. Yocky, D. Wahl, and C. Jakowatz, Jr., “Spotlight-mode SAR image formation utilizing the chirp Z-transform in two dimensions,” in IEEE 2006 Int. Conf. on Geosci. and Remote Sens. Symp. (2006), 4180 –4182.

G. Krieger, M. Younis, S. Huber, F. Bordoni, A. Patyuchenko, J. Kim, P. Laskowski, M. Villano, T. Rommel, P. Lopez-Dekker, and A. Moreira, “Digital beamforming and MIMO SAR: Review and new concepts,” 9th European Conf. on Synthetic Aperture Radar, 2012. EUSAR 11 –14 (2012).

G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar Signal Processing Algorithms (Artech House, 1995).

C. V. Jakowatz, D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson, Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach (Springer, 1996).

B. W. Krause, J. Buck, C. Ryan, D. Hwang, P. Kondratko, A. Malm, A. Gleason, and S. Ashby, “Synthetic aperture ladar flight demonstration,” in 2011 Conf. on Lasers and Electro-Optics (IEEE, 2011), 1–2.W.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley-Interscience, 1998).

http://www.mathworks.com/matlabcentral/fileexchange/25154-costantini-phase-unwrapping , B. Luong (2009)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of experimental setup illustrating basic stripmap mode SAL system. HCN Ref – hydrogen cyanide reference absorption cell. EDFA- erbium doped fiber amplifier.

Fig. 2
Fig. 2

(a) An individual SAL image of white painted penny. (b) Interferogram of two SAL images of penny with tracks separated by about 1 mrad (1.9 mm SA track separation at 137 cm range). The “flat-earth fringes” are present and primarily responsible for the fringes. The penny topography causes the subtle ripples therein. (c) The filtered and unwrapped interferogram presented in false color and perspective representing the surface profile of a penny. The edges of the penny are not well defined due to the rapid height variation. Additionally areas outside the penny (where the image intensity was small) were masked to improve interpretability.

Fig. 3
Fig. 3

(a) 1300x1300 pixel stripmap mode SAL image of dried dragonfly specimen taken at approximately 2 m range with a single mode fiber as a real aperture. This scene did not include retro-reflecting target, and only PGA on the dragonfly was used to compensate the phase errors and focus the image. (b) Photograph of dried dragonfly specimen for visual comparison. (c) Spotlight mode image of the dried dragonfly specimen taken at a 1.4 meter range with a 50 μm real aperture shows dramatic increase in contrast (better SNR) mainly due to better light collection. Observation of the top right wing shows that spotlight mode imaging reveals the fine structure of the insect wing. The image is 1200x1200 pixels. Aspect ratio is due to pixel dimension being larger in range. Here, PGA is applied in range and cross-range as well as CZT-PF processing (defined in text). Grayscale is inverted on both SAL images. (d) Schematic of spotlight and bistatic mode setups.

Fig. 4
Fig. 4

(a) Spotlight SAL image of USAF 1951 resolution target (negative of chrome pattern on glass) with PGA applied in cross-range only. (b) Same SAL image with PGA applied in cross-range and range after CZT-PF processing. Images have 900 pixels in cross-range and 300 pixels in range. The large bars in the lower left have a pitch of 1 line/mm. Also note that the target is squashed by a factor of sin(45°) in the range dimension due to the slant angle. Grayscale inverted on both images.

Fig. 5
Fig. 5

Bistatic SAL image of a computer memory module using CZT-PF and PGA processing as described above. Image shown is 1200 pixels in cross-range (horizontal) and 600 pixels in range. The blurring away from the center of the image indicates full polar formatting may help image quality.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=(R2R1) 2π λ bh R º 2π λ ,

Metrics