Abstract

We propose a method and present applications of this method that converts a diffraction pattern into an elemental image set in order to display them on an integral imaging based display setup. We generate elemental images based on diffraction calculations as an alternative to commonly used ray tracing methods. Ray tracing methods do not accommodate the interference and diffraction phenomena. Our proposed method enables us to obtain elemental images from a holographic recording of a 3D object/scene. The diffraction pattern can be either numerically generated data or digitally acquired optical data. The method shows the connection between a hologram (diffraction pattern) and an elemental image set of the same 3D object. We showed three examples, one of which is the digitally captured optical diffraction tomography data of an epithelium cell. We obtained optical reconstructions with our integral imaging display setup where we used a digital lenslet array. We also obtained numerical reconstructions, again by using the diffraction calculations, for comparison. The digital and optical reconstruction results are in good agreement.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La photographie intégrale,” C.R. Hebd. Seances Acad. Sci.146, 446–451 (1908).
  2. F. Okano, H. Hoshino, H. A. Jun, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on the integral photography,” Appl. Opt.36, 1–14 (1997).
    [CrossRef]
  3. S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray-traced model of capturing optics,” J. Electron Imaging15, 0430071–0430078 (2006).
    [CrossRef]
  4. S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45, L744–L747 (2006).
    [CrossRef]
  5. S.-H. Lee, S.-C. Kim, and E.-S. Kim, “Reconstruction of digital hologram generated by sub-image of integral imaging,” Proc. of SPIE6912, 69121F1–69121F10 (2008).
  6. S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photgraphy,” Proc. of SPIE4297, 187–195 (2001).
    [CrossRef]
  7. J.-K. Lee, S.-C. Kim, and E.-S. Kim, “Reconstruction of three-dimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. of SPIE6695, 6695191–66951912 (2007).
  8. B.-N.-R. Lee, Y. Cho, K.. S. Park, S.-W. Min, J.-S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc.4161, 135–140 (2006).
    [CrossRef]
  9. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. and Tech.13, R85–R110 (2002).
    [CrossRef]
  10. L. Onural, “Sampling of the diffraction field,” Appl. Opt.39, 5929–5935 (2000).
    [CrossRef]
  11. A. Ö. Yöntem and Levent Onural, “Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A28, 2359–2375 (2011).
    [CrossRef]
  12. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, Inc., 1991).
    [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics (Mc-Graw-Hill, 1996).
  14. T. Mishina, M. Okui, and F. Okano, “Generation of holograms using integral photography,” Proc. of SPIE5599, 114–122 (2004).
    [CrossRef]
  15. R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett.10, 20–22 (1967).
    [CrossRef]
  16. B. Javidi and S.-H. Hong, “Three-dimensional holographic image sensing and integral imaging display,” J. Disp. Technol1, 341–346 (2005).
    [CrossRef]
  17. C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng.461158011–1158016 (2007).
    [CrossRef]
  18. J. G.-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik116, 44–48 (2005).
    [CrossRef]
  19. T. Baumbach, E. Kolenović, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt.45, 6077–6085 (2006).
    [CrossRef] [PubMed]
  20. T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express12, 4320–4325 (2004).
    [CrossRef] [PubMed]
  21. F. Yaraş and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. of SPIE7237, 72370O1–72370O5 (2010).
  22. I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE7376, 7376131–7376138 (2010).
  23. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun.164, 233–245 (1999).
    [CrossRef]
  24. H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng.46, 0958021–09580211 (2007).
    [CrossRef]
  25. T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A-Pure and Appl. Opt.10, 0753081–0753085 (2009).
  26. J.-S. Jang and B. Javidi, “Three-dimensional integral imaging with electronically synthesized lenslet arrays,” Opt. Lett.27, 1767–1769 (2002).
    [CrossRef]
  27. M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in Three-Dimensional Television-Capture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.
  28. L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. of IEEE99, 576–589 (2011).
    [CrossRef]
  29. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express19, 9147–9156 (2011).
    [CrossRef]
  30. S.-W. Min, S. Jung, H. Choi, Y. Kim, J.-H. Park, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt.44, 546–552 (2005).
    [CrossRef] [PubMed]
  31. D.-H. Shin, B.-G. Lee, J. Hyun, D.-C. Hwang, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J.31, 105–110 (2009).
    [CrossRef]

2011 (3)

2010 (2)

F. Yaraş and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. of SPIE7237, 72370O1–72370O5 (2010).

I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE7376, 7376131–7376138 (2010).

2009 (2)

T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A-Pure and Appl. Opt.10, 0753081–0753085 (2009).

D.-H. Shin, B.-G. Lee, J. Hyun, D.-C. Hwang, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J.31, 105–110 (2009).
[CrossRef]

2008 (1)

S.-H. Lee, S.-C. Kim, and E.-S. Kim, “Reconstruction of digital hologram generated by sub-image of integral imaging,” Proc. of SPIE6912, 69121F1–69121F10 (2008).

2007 (3)

C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng.461158011–1158016 (2007).
[CrossRef]

J.-K. Lee, S.-C. Kim, and E.-S. Kim, “Reconstruction of three-dimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. of SPIE6695, 6695191–66951912 (2007).

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng.46, 0958021–09580211 (2007).
[CrossRef]

2006 (4)

B.-N.-R. Lee, Y. Cho, K.. S. Park, S.-W. Min, J.-S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc.4161, 135–140 (2006).
[CrossRef]

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray-traced model of capturing optics,” J. Electron Imaging15, 0430071–0430078 (2006).
[CrossRef]

S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45, L744–L747 (2006).
[CrossRef]

T. Baumbach, E. Kolenović, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt.45, 6077–6085 (2006).
[CrossRef] [PubMed]

2005 (3)

J. G.-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik116, 44–48 (2005).
[CrossRef]

B. Javidi and S.-H. Hong, “Three-dimensional holographic image sensing and integral imaging display,” J. Disp. Technol1, 341–346 (2005).
[CrossRef]

S.-W. Min, S. Jung, H. Choi, Y. Kim, J.-H. Park, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt.44, 546–552 (2005).
[CrossRef] [PubMed]

2004 (2)

2002 (2)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. and Tech.13, R85–R110 (2002).
[CrossRef]

J.-S. Jang and B. Javidi, “Three-dimensional integral imaging with electronically synthesized lenslet arrays,” Opt. Lett.27, 1767–1769 (2002).
[CrossRef]

2001 (1)

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photgraphy,” Proc. of SPIE4297, 187–195 (2001).
[CrossRef]

2000 (1)

1999 (1)

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun.164, 233–245 (1999).
[CrossRef]

1997 (1)

F. Okano, H. Hoshino, H. A. Jun, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on the integral photography,” Appl. Opt.36, 1–14 (1997).
[CrossRef]

1967 (1)

R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett.10, 20–22 (1967).
[CrossRef]

1908 (1)

G. Lippmann, “La photographie intégrale,” C.R. Hebd. Seances Acad. Sci.146, 446–451 (1908).

Abe, Y.

T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A-Pure and Appl. Opt.10, 0753081–0753085 (2009).

Arfire, C.

I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE7376, 7376131–7376138 (2010).

Athineos, S. S.

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray-traced model of capturing optics,” J. Electron Imaging15, 0430071–0430078 (2006).
[CrossRef]

Baumbach, T.

Benzie, P.

M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in Three-Dimensional Television-Capture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.

Bergoënd, I.

I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE7376, 7376131–7376138 (2010).

Bernardo, L. M.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun.164, 233–245 (1999).
[CrossRef]

Cho, Y.

S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45, L744–L747 (2006).
[CrossRef]

B.-N.-R. Lee, Y. Cho, K.. S. Park, S.-W. Min, J.-S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc.4161, 135–140 (2006).
[CrossRef]

Choi, H.

Depeursinge, C.

I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE7376, 7376131–7376138 (2010).

Esmer, G. B.

M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in Three-Dimensional Television-Capture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.

Ferreira, C.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun.164, 233–245 (1999).
[CrossRef]

Fujii, T.

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng.46, 0958021–09580211 (2007).
[CrossRef]

G.-Sucerquia, J.

J. G.-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik116, 44–48 (2005).
[CrossRef]

Garcia, J.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun.164, 233–245 (1999).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Mc-Graw-Hill, 1996).

Hahn, M.

S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45, L744–L747 (2006).
[CrossRef]

Hong, S.-H.

B. Javidi and S.-H. Hong, “Three-dimensional holographic image sensing and integral imaging display,” J. Disp. Technol1, 341–346 (2005).
[CrossRef]

Hoshino, H.

F. Okano, H. Hoshino, H. A. Jun, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on the integral photography,” Appl. Opt.36, 1–14 (1997).
[CrossRef]

Hwang, D.-C.

D.-H. Shin, B.-G. Lee, J. Hyun, D.-C. Hwang, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J.31, 105–110 (2009).
[CrossRef]

Hyun, J.

D.-H. Shin, B.-G. Lee, J. Hyun, D.-C. Hwang, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J.31, 105–110 (2009).
[CrossRef]

Ichihashi, Y.

T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A-Pure and Appl. Opt.10, 0753081–0753085 (2009).

Ilieva, R.

M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in Three-Dimensional Television-Capture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.

Ito, T.

T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A-Pure and Appl. Opt.10, 0753081–0753085 (2009).

T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express12, 4320–4325 (2004).
[CrossRef] [PubMed]

Jang, J.-S.

Javidi, B.

B. Javidi and S.-H. Hong, “Three-dimensional holographic image sensing and integral imaging display,” J. Disp. Technol1, 341–346 (2005).
[CrossRef]

J.-S. Jang and B. Javidi, “Three-dimensional integral imaging with electronically synthesized lenslet arrays,” Opt. Lett.27, 1767–1769 (2002).
[CrossRef]

Jun, H. A.

F. Okano, H. Hoshino, H. A. Jun, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on the integral photography,” Appl. Opt.36, 1–14 (1997).
[CrossRef]

Jung, S.

S.-W. Min, S. Jung, H. Choi, Y. Kim, J.-H. Park, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt.44, 546–552 (2005).
[CrossRef] [PubMed]

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photgraphy,” Proc. of SPIE4297, 187–195 (2001).
[CrossRef]

Jüptner, W.

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. and Tech.13, R85–R110 (2002).
[CrossRef]

Kang, H.

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. of IEEE99, 576–589 (2011).
[CrossRef]

F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express19, 9147–9156 (2011).
[CrossRef]

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng.46, 0958021–09580211 (2007).
[CrossRef]

Kang, X.

C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng.461158011–1158016 (2007).
[CrossRef]

Kebbel, V.

Kim, E.-S.

D.-H. Shin, B.-G. Lee, J. Hyun, D.-C. Hwang, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J.31, 105–110 (2009).
[CrossRef]

S.-H. Lee, S.-C. Kim, and E.-S. Kim, “Reconstruction of digital hologram generated by sub-image of integral imaging,” Proc. of SPIE6912, 69121F1–69121F10 (2008).

J.-K. Lee, S.-C. Kim, and E.-S. Kim, “Reconstruction of three-dimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. of SPIE6695, 6695191–66951912 (2007).

Kim, S.-C.

S.-H. Lee, S.-C. Kim, and E.-S. Kim, “Reconstruction of digital hologram generated by sub-image of integral imaging,” Proc. of SPIE6912, 69121F1–69121F10 (2008).

J.-K. Lee, S.-C. Kim, and E.-S. Kim, “Reconstruction of three-dimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. of SPIE6695, 6695191–66951912 (2007).

Kim, Y.

Kolenovic, E.

Kovachev, M.

M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in Three-Dimensional Television-Capture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.

Lee, B.

S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45, L744–L747 (2006).
[CrossRef]

S.-W. Min, S. Jung, H. Choi, Y. Kim, J.-H. Park, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt.44, 546–552 (2005).
[CrossRef] [PubMed]

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photgraphy,” Proc. of SPIE4297, 187–195 (2001).
[CrossRef]

Lee, B.-G.

D.-H. Shin, B.-G. Lee, J. Hyun, D.-C. Hwang, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J.31, 105–110 (2009).
[CrossRef]

Lee, B.-N.-R.

B.-N.-R. Lee, Y. Cho, K.. S. Park, S.-W. Min, J.-S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc.4161, 135–140 (2006).
[CrossRef]

Lee, J.-K.

J.-K. Lee, S.-C. Kim, and E.-S. Kim, “Reconstruction of three-dimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. of SPIE6695, 6695191–66951912 (2007).

Lee, S.-H.

S.-H. Lee, S.-C. Kim, and E.-S. Kim, “Reconstruction of digital hologram generated by sub-image of integral imaging,” Proc. of SPIE6912, 69121F1–69121F10 (2008).

Lim, J.-S.

B.-N.-R. Lee, Y. Cho, K.. S. Park, S.-W. Min, J.-S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc.4161, 135–140 (2006).
[CrossRef]

Lippmann, G.

G. Lippmann, “La photographie intégrale,” C.R. Hebd. Seances Acad. Sci.146, 446–451 (1908).

Marinho, F.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun.164, 233–245 (1999).
[CrossRef]

Maroulis, D. E.

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray-traced model of capturing optics,” J. Electron Imaging15, 0430071–0430078 (2006).
[CrossRef]

Mas, D.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun.164, 233–245 (1999).
[CrossRef]

Masuda, N.

T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A-Pure and Appl. Opt.10, 0753081–0753085 (2009).

Min, S.-W.

B.-N.-R. Lee, Y. Cho, K.. S. Park, S.-W. Min, J.-S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc.4161, 135–140 (2006).
[CrossRef]

S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45, L744–L747 (2006).
[CrossRef]

S.-W. Min, S. Jung, H. Choi, Y. Kim, J.-H. Park, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt.44, 546–552 (2005).
[CrossRef] [PubMed]

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photgraphy,” Proc. of SPIE4297, 187–195 (2001).
[CrossRef]

Mishina, T.

T. Mishina, M. Okui, and F. Okano, “Generation of holograms using integral photography,” Proc. of SPIE5599, 114–122 (2004).
[CrossRef]

Nakayama, H.

T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A-Pure and Appl. Opt.10, 0753081–0753085 (2009).

Okano, F.

T. Mishina, M. Okui, and F. Okano, “Generation of holograms using integral photography,” Proc. of SPIE5599, 114–122 (2004).
[CrossRef]

F. Okano, H. Hoshino, H. A. Jun, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on the integral photography,” Appl. Opt.36, 1–14 (1997).
[CrossRef]

Okano, K.

Okui, M.

T. Mishina, M. Okui, and F. Okano, “Generation of holograms using integral photography,” Proc. of SPIE5599, 114–122 (2004).
[CrossRef]

Onural, L.

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. of IEEE99, 576–589 (2011).
[CrossRef]

F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express19, 9147–9156 (2011).
[CrossRef]

F. Yaraş and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. of SPIE7237, 72370O1–72370O5 (2010).

L. Onural, “Sampling of the diffraction field,” Appl. Opt.39, 5929–5935 (2000).
[CrossRef]

M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in Three-Dimensional Television-Capture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.

Onural, Levent

Papageorgas, P. G.

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray-traced model of capturing optics,” J. Electron Imaging15, 0430071–0430078 (2006).
[CrossRef]

Park, J.-H.

S.-W. Min, S. Jung, H. Choi, Y. Kim, J.-H. Park, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt.44, 546–552 (2005).
[CrossRef] [PubMed]

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photgraphy,” Proc. of SPIE4297, 187–195 (2001).
[CrossRef]

Park, K. R.

B.-N.-R. Lee, Y. Cho, K.. S. Park, S.-W. Min, J.-S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc.4161, 135–140 (2006).
[CrossRef]

Park, K. S.

S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45, L744–L747 (2006).
[CrossRef]

Park, K.. S.

B.-N.-R. Lee, Y. Cho, K.. S. Park, S.-W. Min, J.-S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc.4161, 135–140 (2006).
[CrossRef]

Pavillon, N.

I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE7376, 7376131–7376138 (2010).

Pole, R. V.

R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett.10, 20–22 (1967).
[CrossRef]

Prieto, D. V.

J. G.-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik116, 44–48 (2005).
[CrossRef]

Quan, C.

C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng.461158011–1158016 (2007).
[CrossRef]

Ramírez, J. A. H.

J. G.-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik116, 44–48 (2005).
[CrossRef]

Reyhan, T.

M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in Three-Dimensional Television-Capture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, Inc., 1991).
[CrossRef]

Sangriotis, M. S.

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray-traced model of capturing optics,” J. Electron Imaging15, 0430071–0430078 (2006).
[CrossRef]

Schnars, U.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. and Tech.13, R85–R110 (2002).
[CrossRef]

Sgouros, N. P.

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray-traced model of capturing optics,” J. Electron Imaging15, 0430071–0430078 (2006).
[CrossRef]

Shimobaba, T.

T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A-Pure and Appl. Opt.10, 0753081–0753085 (2009).

Shin, D.-H.

D.-H. Shin, B.-G. Lee, J. Hyun, D.-C. Hwang, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J.31, 105–110 (2009).
[CrossRef]

Shiraki, A.

T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A-Pure and Appl. Opt.10, 0753081–0753085 (2009).

Sugie, T.

T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A-Pure and Appl. Opt.10, 0753081–0753085 (2009).

Takada, N.

T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A-Pure and Appl. Opt.10, 0753081–0753085 (2009).

Tay, C. J.

C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng.461158011–1158016 (2007).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, Inc., 1991).
[CrossRef]

Theofanous, N. G.

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray-traced model of capturing optics,” J. Electron Imaging15, 0430071–0430078 (2006).
[CrossRef]

Watson, J.

M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in Three-Dimensional Television-Capture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.

Whang, M. C.

B.-N.-R. Lee, Y. Cho, K.. S. Park, S.-W. Min, J.-S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc.4161, 135–140 (2006).
[CrossRef]

Yamaguchi, T.

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng.46, 0958021–09580211 (2007).
[CrossRef]

Yaras, F.

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. of IEEE99, 576–589 (2011).
[CrossRef]

F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express19, 9147–9156 (2011).
[CrossRef]

F. Yaraş and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. of SPIE7237, 72370O1–72370O5 (2010).

Yöntem, A. Ö.

Yoshikawa, H.

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng.46, 0958021–09580211 (2007).
[CrossRef]

Yuyama, I.

F. Okano, H. Hoshino, H. A. Jun, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on the integral photography,” Appl. Opt.36, 1–14 (1997).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett.10, 20–22 (1967).
[CrossRef]

C.R. Hebd. Seances Acad. Sci. (1)

G. Lippmann, “La photographie intégrale,” C.R. Hebd. Seances Acad. Sci.146, 446–451 (1908).

ETRI J. (1)

D.-H. Shin, B.-G. Lee, J. Hyun, D.-C. Hwang, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J.31, 105–110 (2009).
[CrossRef]

J. Disp. Technol (1)

B. Javidi and S.-H. Hong, “Three-dimensional holographic image sensing and integral imaging display,” J. Disp. Technol1, 341–346 (2005).
[CrossRef]

J. Electron Imaging (1)

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray-traced model of capturing optics,” J. Electron Imaging15, 0430071–0430078 (2006).
[CrossRef]

J. Opt. A-Pure and Appl. Opt. (1)

T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A-Pure and Appl. Opt.10, 0753081–0753085 (2009).

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45, L744–L747 (2006).
[CrossRef]

Lect. Notes Comput. Sc. (1)

B.-N.-R. Lee, Y. Cho, K.. S. Park, S.-W. Min, J.-S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc.4161, 135–140 (2006).
[CrossRef]

Meas. Sci. and Tech. (1)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. and Tech.13, R85–R110 (2002).
[CrossRef]

Opt. Commun. (1)

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun.164, 233–245 (1999).
[CrossRef]

Opt. Eng. (2)

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng.46, 0958021–09580211 (2007).
[CrossRef]

C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng.461158011–1158016 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Optik (1)

J. G.-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik116, 44–48 (2005).
[CrossRef]

Proc. of IEEE (1)

L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. of IEEE99, 576–589 (2011).
[CrossRef]

Proc. of SPIE (6)

F. Yaraş and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. of SPIE7237, 72370O1–72370O5 (2010).

I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE7376, 7376131–7376138 (2010).

T. Mishina, M. Okui, and F. Okano, “Generation of holograms using integral photography,” Proc. of SPIE5599, 114–122 (2004).
[CrossRef]

S.-H. Lee, S.-C. Kim, and E.-S. Kim, “Reconstruction of digital hologram generated by sub-image of integral imaging,” Proc. of SPIE6912, 69121F1–69121F10 (2008).

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photgraphy,” Proc. of SPIE4297, 187–195 (2001).
[CrossRef]

J.-K. Lee, S.-C. Kim, and E.-S. Kim, “Reconstruction of three-dimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. of SPIE6695, 6695191–66951912 (2007).

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, Inc., 1991).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (Mc-Graw-Hill, 1996).

M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in Three-Dimensional Television-Capture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

(a) A generic sketch of holographic recording. The diffraction pattern at z = z0 is captured. (b) A generic sketch of 3D image reconstruction from the captured hologram.

Fig. 2
Fig. 2

(a) A generic integral imaging data capture setup. The diffraction pattern in Fig.1 (a) is also depicted. For the same object with the same physical dimensions, the diffraction patterns in both systems are the same. (b) A generic Integral imaging display setup. The reconstruction is pseudoscopic due to employed direct pick-up method.(c) Designed model to calculate elemental images from diffraction (hologram) data.

Fig. 3
Fig. 3

The algorithm to generate elemental images from a diffraction pattern.

Fig. 4
Fig. 4

Computed and recorded elemental images of two letters at different depths and positions. (We enhanced the brightness of the figure for visual purposes. This is achieved by stretching the contrast. The figure is also used on the LCD display of the integral imaging setup as is. Similar enhancement procedure is used in Figs. 6, 8 and 1417. In Figs. 1417, we enhanced only the computer simulation results.)

Fig. 5
Fig. 5

A sketch of the pyramid object. A square pyramid is sampled (sliced) over the z-axis. Base part is a square frame while the edges and the tip of the pyramid are small square patches. For display purposes we showed six slices of the object whereas in the simulations we used nine slices.

Fig. 6
Fig. 6

Computed and recorded elemental images of the pyramid object. (We enhanced the brightness of the figure for visual purposes.)

Fig. 7
Fig. 7

(a) The amplitude picture of the diffraction pattern of the epithelium cell. (b) The upsampled (interpolated and low pass filtered) version of (a).

Fig. 8
Fig. 8

Computed and recorded elemental images of the epithelium cell. (We enhanced the brightness of the figure for visual purposes.)

Fig. 9
Fig. 9

The optical setup

Fig. 10
Fig. 10

A Fresnel lenslet array pattern with 12×20 lenslets. Each lenslet has a focal length of 10.8mm. We excluded the lenslet on either side of the array since they would be cropped if we have included them. Instead we left 60 pixels blank from either side of the array that is written on the 1920 × 1080 pixels phase only LCoS SLM.

Fig. 11
Fig. 11

Picture of the entire optical setup.

Fig. 12
Fig. 12

Top view of the optical setup. There is a wireframe pyramid object next to the reconstruction zone. It is used to compare the reconstructed 3D images of the pyramid object.

Fig. 13
Fig. 13

The viewing zone of the optical setup. We placed cards labeled as “Bilkent University” at different distances in order to check the reconstruction distances.

Fig. 14
Fig. 14

3D reconstruction from the elemental images of Fig. 4. At the top, digital reconstructions are shown while at the bottom we observe the optical counterparts. On the left side, the camera, which took this picture, was focused to a distance 8.4 f and on the right side, it was at 13 f. (We enhanced the brightness of the computer simulation results for visual purposes.)

Fig. 15
Fig. 15

3D reconstruction from the elemental images of Fig. 6. Images at the left are digital reconstructions. Images at the right are optical reconstructions. The top images are focused to the tip of the pyramid object and the images at the bottom are focused to the base of the object. It is clearly seen that the physical (wire) object and the reconstructed 3D images match. (We enhanced the brightness of the computer simulation results for visual purposes.)

Fig. 16
Fig. 16

The pictures of the pyramid image taken from three different angles. (All are focused to the tip of the pyramid.) The pictures at the top are the digital reconstructions and the bottom ones are the optical reconstructions. The pictures show the parallax and the viewing angle. (We enhanced the brightness of the computer simulation results for visual purposes.)

Fig. 17
Fig. 17

Reconstruction from the elemental images of Fig. 8. Top picture is the digital reconstruction whereas the bottom one shows the optical reconstruction. Since the object thickness is small relative to the reconstruction distance, a 3D depth is not perceived. However, the planar looking thin object still floats in 3D space. (We enhanced the brightness of the computer simulation results for visual purposes.)

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

h ( x ) = 1 j λ z exp ( j 2 π λ z ) exp ( j π λ z x T x )
X ˜ [ k ] = n 1 = 0 N 1 n 2 = 0 N 1 x ˜ [ n ] e j 2 π N k T n k 1 , k 2 ( , ) .
t d [ n ] = I D F ^ T { D F ^ T { w t [ n ] } H θ [ k ] }
H ( f ) = exp ( j 2 π λ z ) exp ( j π λ z f T f )
H θ [ k ] = exp ( j θ k T U T U k )
l [ n ] = exp ( j γ n T V T Vn )
l ( x ) = exp ( j π λ f x T x )
p [ n ] = I D F ^ T { D F ^ T { w L A [ n ] t d [ n ] } H σ [ k ] }
I = [ n ] = | p [ n ] | 2 .
w t [ n ] = I D F ^ T { D F ^ T { w t 1 [ n ] R 1 [ n ] } H η [ k ] } + { w t 2 [ n ] R 2 [ n ] }
w t [ n ] = i = 0 I D F ^ T { D F ^ T { w t i [ n ] R i [ n ] } H η [ k ] }
t object [ n ] = I D F ^ T { D F ^ T { t interpolated [ n ] } H η [ k ] } ,
t d [ n ] = I D F ^ T { D F ^ T { I [ n ] R [ n ] } H σ [ k ] } .
r [ n ] = | I D F ^ T { D F ^ T { w L A [ n ] t d [ n ] } H χ [ k ] } | 2

Metrics