Abstract

Both spin angular momentum (SAM) and orbital angular momentum (OAM) can be used to carry information in classical optics and quantum optics. In this paper, the encoding of angular momentum (AM) information of photons onto surface plasmon polaritons (SPPs) is demonstrated using a nano-ring plamonic lens. Near-field energy distribution on the metal surface is measured using a near-field scanning optical microscope (NSOM) when the plasmonic lens is excited by photons with different combinations of SAM and OAM. It is found that both the SAM and OAM can influence the near field energy distribution of SPPs. More interestingly, numerical and experimental studies reveal that the energy distribution on the plasmonic lens surface is determined by the absolute value of the total AM. This gives direct evidences that SPPs can be encoded with the photonic SAM and OAM information simultaneously and the spin degeneracy of the photons can be removed using the interactions between photonic OAM and plasmonic lens. The findings are useful not only for the fundamental understanding of the photonic AM but also for the future design of plasmonic quantum optics devices and systems.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
    [CrossRef] [PubMed]
  2. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
    [CrossRef] [PubMed]
  3. K. Dholakia, G. Spalding, and M. MacDonald, “Optical tweezers: The next generation,” Phys. World15, 31–35 (2002).
  4. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  5. P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
    [CrossRef]
  6. R. J. Voogd, M. Singh, S. Pereira, A. van de Nes, and J. Braat, “The use of orbital angular momentum of light beams for super-high density optical data storage,” in OSA Annual Meeting FTuG14(Optical Society of America, Rochester, New York, 2004).
  7. S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol.21(11), 1347–1355 (2003).
    [CrossRef] [PubMed]
  8. L. Torner, J. Torres, and S. Carrasco, “Digital spiral imaging,” Opt. Express13(3), 873–881 (2005).
    [CrossRef] [PubMed]
  9. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express14(9), 3792–3805 (2006).
    [CrossRef] [PubMed]
  10. J. G. A. Swartzlander., “The optical vortex lens,” Opt. Photon. News17(11), 39–43 (2006).
    [CrossRef]
  11. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express12(22), 5448–5456 (2004).
    [CrossRef] [PubMed]
  12. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
    [CrossRef] [PubMed]
  13. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett.89(24), 240401 (2002).
    [CrossRef] [PubMed]
  14. X.-F. Ren, G.-P. Guo, B. Yu, J. Li, and G.-C. Guo, “The orbital angular momentum of down-converted photons,” J. Opt. B Quantum Semiclassical Opt.6(4), 243–247 (2004).
    [CrossRef]
  15. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007).
    [CrossRef]
  16. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  17. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  18. X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Influence of unsymmetrical periodicity on extraordinary transmission through periodic arrays of subwavelength holes,” Appl. Phys. Lett.90(16), 161112 (2007).
    [CrossRef]
  19. X. F. Ren, G. P. Guo, P. Zhang, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Removal of surface plasmon polariton eigenmodes degeneracy,” Appl. Phys. B89(2-3), 257–260 (2007).
    [CrossRef]
  20. F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
    [CrossRef]
  21. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett.29(10), 1069–1071 (2004).
    [CrossRef] [PubMed]
  22. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  23. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
    [CrossRef]
  24. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
    [CrossRef]
  25. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett.6(8), 1822–1826 (2006).
    [CrossRef] [PubMed]
  26. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
    [CrossRef] [PubMed]
  27. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9(12), 4320–4325 (2009).
    [CrossRef] [PubMed]
  28. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009).
    [CrossRef] [PubMed]
  29. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10(5), 1936–1940 (2010).
    [CrossRef] [PubMed]
  30. G. P. Guo, R. Yang, X. F. Ren, L. L. Wang, H. Y. Shi, B. Hu, S. H. Yu, and G. C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Physica E42(5), 1751–1754 (2010).
    [CrossRef]
  31. V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt.13(6), 064002 (2011).
    [CrossRef]
  32. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008).
    [CrossRef] [PubMed]
  33. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
    [CrossRef] [PubMed]
  34. H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
    [CrossRef] [PubMed]
  35. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature418(6895), 304–306 (2002).
    [CrossRef] [PubMed]
  36. X. F. Ren, G. P. Guo, Y. F. Huang, C. F. Li, and G. C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett.76(5), 753–759 (2006).
    [CrossRef]
  37. Z. Jacob and V. M. Shalaev, “Physics. Plasmonics goes quantum,” Science334(6055), 463–464 (2011).
    [CrossRef] [PubMed]
  38. X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Spatial mode properties of plasmon-assisted transmission,” Opt. Lett.31(18), 2792–2794 (2006).
    [CrossRef] [PubMed]
  39. S. W. Cho, J. Park, S. Y. Lee, H. Kim, and B. Lee, “Coupling of spin and angular momentum of light in plasmonic vortex,” Opt. Express20(9), 10083–10094 (2012).
    [CrossRef] [PubMed]
  40. D. Van Labeke and D. Barchiesi, “Probes for scanning tunneling optical microscopy: A theoretical comparison,” J. Opt. Soc. Am. A10(10), 2193–2201 (1993).
    [CrossRef]
  41. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  42. X. F. Ren, A. P. Liu, C. L. Zou, L. L. Wang, Y. J. Cai, F. W. Sun, G. C. Guo, and G. P. Guo, “Interference of surface plasmon polaritons from a “point” source,” Appl. Phys. Lett.98(20), 201113 (2011).
    [CrossRef]
  43. K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: Unified geometric phase and spin-Hall effect,” Phys. Rev. Lett.101(3), 030404 (2008).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt.13(6), 064002 (2011).
[CrossRef]

Z. Jacob and V. M. Shalaev, “Physics. Plasmonics goes quantum,” Science334(6055), 463–464 (2011).
[CrossRef] [PubMed]

X. F. Ren, A. P. Liu, C. L. Zou, L. L. Wang, Y. J. Cai, F. W. Sun, G. C. Guo, and G. P. Guo, “Interference of surface plasmon polaritons from a “point” source,” Appl. Phys. Lett.98(20), 201113 (2011).
[CrossRef]

2010 (5)

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

G. P. Guo, R. Yang, X. F. Ren, L. L. Wang, H. Y. Shi, B. Hu, S. H. Yu, and G. C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Physica E42(5), 1751–1754 (2010).
[CrossRef]

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

2009 (3)

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

2008 (2)

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: Unified geometric phase and spin-Hall effect,” Phys. Rev. Lett.101(3), 030404 (2008).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008).
[CrossRef] [PubMed]

2007 (3)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007).
[CrossRef]

X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Influence of unsymmetrical periodicity on extraordinary transmission through periodic arrays of subwavelength holes,” Appl. Phys. Lett.90(16), 161112 (2007).
[CrossRef]

X. F. Ren, G. P. Guo, P. Zhang, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Removal of surface plasmon polariton eigenmodes degeneracy,” Appl. Phys. B89(2-3), 257–260 (2007).
[CrossRef]

2006 (7)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett.6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

J. G. A. Swartzlander., “The optical vortex lens,” Opt. Photon. News17(11), 39–43 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express14(9), 3792–3805 (2006).
[CrossRef] [PubMed]

X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Spatial mode properties of plasmon-assisted transmission,” Opt. Lett.31(18), 2792–2794 (2006).
[CrossRef] [PubMed]

X. F. Ren, G. P. Guo, Y. F. Huang, C. F. Li, and G. C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett.76(5), 753–759 (2006).
[CrossRef]

2005 (2)

L. Torner, J. Torres, and S. Carrasco, “Digital spiral imaging,” Opt. Express13(3), 873–881 (2005).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (3)

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol.21(11), 1347–1355 (2003).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002 (3)

K. Dholakia, G. Spalding, and M. MacDonald, “Optical tweezers: The next generation,” Phys. World15, 31–35 (2002).

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett.89(24), 240401 (2002).
[CrossRef] [PubMed]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature418(6895), 304–306 (2002).
[CrossRef] [PubMed]

2001 (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

2000 (1)

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
[CrossRef]

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

1993 (1)

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Abeysinghe, D. C.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Al-Awfi, S.

V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt.13(6), 064002 (2011).
[CrossRef]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Altewischer, E.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature418(6895), 304–306 (2002).
[CrossRef] [PubMed]

Andrews, D. L.

V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt.13(6), 064002 (2011).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Babiker, M.

V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt.13(6), 064002 (2011).
[CrossRef]

Barchiesi, D.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Barnett, S.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Bernet, S.

Bliokh, K. Y.

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: Unified geometric phase and spin-Hall effect,” Phys. Rev. Lett.101(3), 030404 (2008).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Bretner, I.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

Cai, Y. J.

X. F. Ren, A. P. Liu, C. L. Zou, L. L. Wang, Y. J. Cai, F. W. Sun, G. C. Guo, and G. P. Guo, “Interference of surface plasmon polaritons from a “point” source,” Appl. Phys. Lett.98(20), 201113 (2011).
[CrossRef]

Carrasco, S.

Chen, W.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Cho, S. W.

Cho, S.-W.

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

Courtial, J.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Dholakia, K.

K. Dholakia, G. Spalding, and M. MacDonald, “Optical tweezers: The next generation,” Phys. World15, 31–35 (2002).

Dickson, R. M.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
[CrossRef]

Ditlbacher, H.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Dufresne, E. R.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett.6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Felidj, N.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Franke-Arnold, S.

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

Fürhapter, S.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Gibson, G.

Goh, X. M.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

Gorodetski, Y.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: Unified geometric phase and spin-Hall effect,” Phys. Rev. Lett.101(3), 030404 (2008).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008).
[CrossRef] [PubMed]

Gorshkov, A. V.

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

Gramotnev, D. K.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Guo, G. C.

X. F. Ren, A. P. Liu, C. L. Zou, L. L. Wang, Y. J. Cai, F. W. Sun, G. C. Guo, and G. P. Guo, “Interference of surface plasmon polaritons from a “point” source,” Appl. Phys. Lett.98(20), 201113 (2011).
[CrossRef]

G. P. Guo, R. Yang, X. F. Ren, L. L. Wang, H. Y. Shi, B. Hu, S. H. Yu, and G. C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Physica E42(5), 1751–1754 (2010).
[CrossRef]

X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Influence of unsymmetrical periodicity on extraordinary transmission through periodic arrays of subwavelength holes,” Appl. Phys. Lett.90(16), 161112 (2007).
[CrossRef]

X. F. Ren, G. P. Guo, P. Zhang, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Removal of surface plasmon polariton eigenmodes degeneracy,” Appl. Phys. B89(2-3), 257–260 (2007).
[CrossRef]

X. F. Ren, G. P. Guo, Y. F. Huang, C. F. Li, and G. C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett.76(5), 753–759 (2006).
[CrossRef]

X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Spatial mode properties of plasmon-assisted transmission,” Opt. Lett.31(18), 2792–2794 (2006).
[CrossRef] [PubMed]

Guo, G. P.

X. F. Ren, A. P. Liu, C. L. Zou, L. L. Wang, Y. J. Cai, F. W. Sun, G. C. Guo, and G. P. Guo, “Interference of surface plasmon polaritons from a “point” source,” Appl. Phys. Lett.98(20), 201113 (2011).
[CrossRef]

G. P. Guo, R. Yang, X. F. Ren, L. L. Wang, H. Y. Shi, B. Hu, S. H. Yu, and G. C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Physica E42(5), 1751–1754 (2010).
[CrossRef]

X. F. Ren, G. P. Guo, P. Zhang, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Removal of surface plasmon polariton eigenmodes degeneracy,” Appl. Phys. B89(2-3), 257–260 (2007).
[CrossRef]

X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Influence of unsymmetrical periodicity on extraordinary transmission through periodic arrays of subwavelength holes,” Appl. Phys. Lett.90(16), 161112 (2007).
[CrossRef]

X. F. Ren, G. P. Guo, Y. F. Huang, C. F. Li, and G. C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett.76(5), 753–759 (2006).
[CrossRef]

X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Spatial mode properties of plasmon-assisted transmission,” Opt. Lett.31(18), 2792–2794 (2006).
[CrossRef] [PubMed]

Guo, G.-C.

X.-F. Ren, G.-P. Guo, B. Yu, J. Li, and G.-C. Guo, “The orbital angular momentum of down-converted photons,” J. Opt. B Quantum Semiclassical Opt.6(4), 243–247 (2004).
[CrossRef]

Guo, G.-P.

X.-F. Ren, G.-P. Guo, B. Yu, J. Li, and G.-C. Guo, “The orbital angular momentum of down-converted photons,” J. Opt. B Quantum Semiclassical Opt.6(4), 243–247 (2004).
[CrossRef]

Harke, B.

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

Hasman, E.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008).
[CrossRef] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: Unified geometric phase and spin-Hall effect,” Phys. Rev. Lett.101(3), 030404 (2008).
[CrossRef] [PubMed]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

Hell, S. W.

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol.21(11), 1347–1355 (2003).
[CrossRef] [PubMed]

Hodges, J. S.

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

Hu, B.

G. P. Guo, R. Yang, X. F. Ren, L. L. Wang, H. Y. Shi, B. Hu, S. H. Yu, and G. C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Physica E42(5), 1751–1754 (2010).
[CrossRef]

Huang, Y. F.

X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Influence of unsymmetrical periodicity on extraordinary transmission through periodic arrays of subwavelength holes,” Appl. Phys. Lett.90(16), 161112 (2007).
[CrossRef]

X. F. Ren, G. P. Guo, P. Zhang, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Removal of surface plasmon polariton eigenmodes degeneracy,” Appl. Phys. B89(2-3), 257–260 (2007).
[CrossRef]

X. F. Ren, G. P. Guo, Y. F. Huang, C. F. Li, and G. C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett.76(5), 753–759 (2006).
[CrossRef]

X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Spatial mode properties of plasmon-assisted transmission,” Opt. Lett.31(18), 2792–2794 (2006).
[CrossRef] [PubMed]

Jacob, Z.

Z. Jacob and V. M. Shalaev, “Physics. Plasmonics goes quantum,” Science334(6055), 463–464 (2011).
[CrossRef] [PubMed]

Jesacher, A.

Jiang, L.

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

Kang, M.

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

Kim, H.

S. W. Cho, J. Park, S. Y. Lee, H. Kim, and B. Lee, “Coupling of spin and angular momentum of light in plasmonic vortex,” Opt. Express20(9), 10083–10094 (2012).
[CrossRef] [PubMed]

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

Kleiner, V.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008).
[CrossRef] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: Unified geometric phase and spin-Hall effect,” Phys. Rev. Lett.101(3), 030404 (2008).
[CrossRef] [PubMed]

Krenn, J. R.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Lamprecht, B.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Lee, B.

S. W. Cho, J. Park, S. Y. Lee, H. Kim, and B. Lee, “Coupling of spin and angular momentum of light in plasmonic vortex,” Opt. Express20(9), 10083–10094 (2012).
[CrossRef] [PubMed]

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

Lee, S. Y.

Lee, S.-Y.

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

Leitner, A.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Lembessis, V. E.

V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt.13(6), 064002 (2011).
[CrossRef]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Li, C. F.

X. F. Ren, G. P. Guo, Y. F. Huang, C. F. Li, and G. C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett.76(5), 753–759 (2006).
[CrossRef]

Li, J.

X.-F. Ren, G.-P. Guo, B. Yu, J. Li, and G.-C. Guo, “The orbital angular momentum of down-converted photons,” J. Opt. B Quantum Semiclassical Opt.6(4), 243–247 (2004).
[CrossRef]

Lin, L.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

Liu, A. P.

X. F. Ren, A. P. Liu, C. L. Zou, L. L. Wang, Y. J. Cai, F. W. Sun, G. C. Guo, and G. P. Guo, “Interference of surface plasmon polaritons from a “point” source,” Appl. Phys. Lett.98(20), 201113 (2011).
[CrossRef]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Lukin, M. D.

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

Lyon, L. A.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
[CrossRef]

MacDonald, M.

K. Dholakia, G. Spalding, and M. MacDonald, “Optical tweezers: The next generation,” Phys. World15, 31–35 (2002).

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Maurer, C.

Maurer, P. C.

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

Maze, J. R.

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

McGuinness, L. P.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007).
[CrossRef]

Nelson, R. L.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Padgett, M.

Park, J.

S. W. Cho, J. Park, S. Y. Lee, H. Kim, and B. Lee, “Coupling of spin and angular momentum of light in plasmonic vortex,” Opt. Express20(9), 10083–10094 (2012).
[CrossRef] [PubMed]

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

Pas’ko, V.

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Pile, D. F. P.

Reed, M. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett.6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Ren, X. F.

X. F. Ren, A. P. Liu, C. L. Zou, L. L. Wang, Y. J. Cai, F. W. Sun, G. C. Guo, and G. P. Guo, “Interference of surface plasmon polaritons from a “point” source,” Appl. Phys. Lett.98(20), 201113 (2011).
[CrossRef]

G. P. Guo, R. Yang, X. F. Ren, L. L. Wang, H. Y. Shi, B. Hu, S. H. Yu, and G. C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Physica E42(5), 1751–1754 (2010).
[CrossRef]

X. F. Ren, G. P. Guo, P. Zhang, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Removal of surface plasmon polariton eigenmodes degeneracy,” Appl. Phys. B89(2-3), 257–260 (2007).
[CrossRef]

X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Influence of unsymmetrical periodicity on extraordinary transmission through periodic arrays of subwavelength holes,” Appl. Phys. Lett.90(16), 161112 (2007).
[CrossRef]

X. F. Ren, G. P. Guo, Y. F. Huang, C. F. Li, and G. C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett.76(5), 753–759 (2006).
[CrossRef]

X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Spatial mode properties of plasmon-assisted transmission,” Opt. Lett.31(18), 2792–2794 (2006).
[CrossRef] [PubMed]

Ren, X.-F.

X.-F. Ren, G.-P. Guo, B. Yu, J. Li, and G.-C. Guo, “The orbital angular momentum of down-converted photons,” J. Opt. B Quantum Semiclassical Opt.6(4), 243–247 (2004).
[CrossRef]

Ritsch-Marte, M.

Roberts, A.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

Routenberg, D. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett.6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

Salerno, M.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Sanders, A. W.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett.6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Schider, G.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Shalaev, V. M.

Z. Jacob and V. M. Shalaev, “Physics. Plasmonics goes quantum,” Science334(6055), 463–464 (2011).
[CrossRef] [PubMed]

Shi, H. Y.

G. P. Guo, R. Yang, X. F. Ren, L. L. Wang, H. Y. Shi, B. Hu, S. H. Yu, and G. C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Physica E42(5), 1751–1754 (2010).
[CrossRef]

Shitrit, N.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

Spalding, G.

K. Dholakia, G. Spalding, and M. MacDonald, “Optical tweezers: The next generation,” Phys. World15, 31–35 (2002).

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Stanwix, P. L.

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Sun, F. W.

X. F. Ren, A. P. Liu, C. L. Zou, L. L. Wang, Y. J. Cai, F. W. Sun, G. C. Guo, and G. P. Guo, “Interference of surface plasmon polaritons from a “point” source,” Appl. Phys. Lett.98(20), 201113 (2011).
[CrossRef]

Swartzlander, J. G. A.

J. G. A. Swartzlander., “The optical vortex lens,” Opt. Photon. News17(11), 39–43 (2006).
[CrossRef]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007).
[CrossRef]

L. Torner, J. Torres, and S. Carrasco, “Digital spiral imaging,” Opt. Express13(3), 873–881 (2005).
[CrossRef] [PubMed]

Torres, J.

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007).
[CrossRef]

Twitchen, D.

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

van Exter, M. P.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature418(6895), 304–306 (2002).
[CrossRef] [PubMed]

Van Labeke, D.

Vasnetsov, M.

Vaziri, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett.89(24), 240401 (2002).
[CrossRef] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Walsworth, R. L.

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

Wang, L. L.

X. F. Ren, A. P. Liu, C. L. Zou, L. L. Wang, Y. J. Cai, F. W. Sun, G. C. Guo, and G. P. Guo, “Interference of surface plasmon polaritons from a “point” source,” Appl. Phys. Lett.98(20), 201113 (2011).
[CrossRef]

G. P. Guo, R. Yang, X. F. Ren, L. L. Wang, H. Y. Shi, B. Hu, S. H. Yu, and G. C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Physica E42(5), 1751–1754 (2010).
[CrossRef]

Wang, Z. W.

X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Influence of unsymmetrical periodicity on extraordinary transmission through periodic arrays of subwavelength holes,” Appl. Phys. Lett.90(16), 161112 (2007).
[CrossRef]

X. F. Ren, G. P. Guo, P. Zhang, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Removal of surface plasmon polariton eigenmodes degeneracy,” Appl. Phys. B89(2-3), 257–260 (2007).
[CrossRef]

X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Spatial mode properties of plasmon-assisted transmission,” Opt. Lett.31(18), 2792–2794 (2006).
[CrossRef] [PubMed]

Weeber, J. C.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Weihs, G.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett.89(24), 240401 (2002).
[CrossRef] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Wiley, B. J.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett.6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Woerdman, J. P.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature418(6895), 304–306 (2002).
[CrossRef] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Xia, Y.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett.6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Yacoby, A.

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Yang, R.

G. P. Guo, R. Yang, X. F. Ren, L. L. Wang, H. Y. Shi, B. Hu, S. H. Yu, and G. C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Physica E42(5), 1751–1754 (2010).
[CrossRef]

Yu, B.

X.-F. Ren, G.-P. Guo, B. Yu, J. Li, and G.-C. Guo, “The orbital angular momentum of down-converted photons,” J. Opt. B Quantum Semiclassical Opt.6(4), 243–247 (2004).
[CrossRef]

Yu, S. H.

G. P. Guo, R. Yang, X. F. Ren, L. L. Wang, H. Y. Shi, B. Hu, S. H. Yu, and G. C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Physica E42(5), 1751–1754 (2010).
[CrossRef]

Zeilinger, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett.89(24), 240401 (2002).
[CrossRef] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Zhan, Q.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Zhang, P.

X. F. Ren, G. P. Guo, P. Zhang, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Removal of surface plasmon polariton eigenmodes degeneracy,” Appl. Phys. B89(2-3), 257–260 (2007).
[CrossRef]

Zhang, X.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Zibrov, A. A.

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

Zibrov, A. S.

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

Zou, C. L.

X. F. Ren, A. P. Liu, C. L. Zou, L. L. Wang, Y. J. Cai, F. W. Sun, G. C. Guo, and G. P. Guo, “Interference of surface plasmon polaritons from a “point” source,” Appl. Phys. Lett.98(20), 201113 (2011).
[CrossRef]

Appl. Phys. B (1)

X. F. Ren, G. P. Guo, P. Zhang, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Removal of surface plasmon polariton eigenmodes degeneracy,” Appl. Phys. B89(2-3), 257–260 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Influence of unsymmetrical periodicity on extraordinary transmission through periodic arrays of subwavelength holes,” Appl. Phys. Lett.90(16), 161112 (2007).
[CrossRef]

X. F. Ren, A. P. Liu, C. L. Zou, L. L. Wang, Y. J. Cai, F. W. Sun, G. C. Guo, and G. P. Guo, “Interference of surface plasmon polaritons from a “point” source,” Appl. Phys. Lett.98(20), 201113 (2011).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001).
[CrossRef]

Europhys. Lett. (1)

X. F. Ren, G. P. Guo, Y. F. Huang, C. F. Li, and G. C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett.76(5), 753–759 (2006).
[CrossRef]

J. Opt. (1)

V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt.13(6), 064002 (2011).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt. (1)

X.-F. Ren, G.-P. Guo, B. Yu, J. Li, and G.-C. Guo, “The orbital angular momentum of down-converted photons,” J. Opt. B Quantum Semiclassical Opt.6(4), 243–247 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000).
[CrossRef]

Nano Lett. (7)

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett.6(8), 1822–1826 (2006).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol.21(11), 1347–1355 (2003).
[CrossRef] [PubMed]

Nat. Phys. (2)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007).
[CrossRef]

P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010).
[CrossRef]

Nature (5)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature418(6895), 304–306 (2002).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Opt. Photon. News (1)

J. G. A. Swartzlander., “The optical vortex lens,” Opt. Photon. News17(11), 39–43 (2006).
[CrossRef]

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: Unified geometric phase and spin-Hall effect,” Phys. Rev. Lett.101(3), 030404 (2008).
[CrossRef] [PubMed]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett.89(24), 240401 (2002).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008).
[CrossRef] [PubMed]

Phys. World (1)

K. Dholakia, G. Spalding, and M. MacDonald, “Optical tweezers: The next generation,” Phys. World15, 31–35 (2002).

Physica E (1)

G. P. Guo, R. Yang, X. F. Ren, L. L. Wang, H. Y. Shi, B. Hu, S. H. Yu, and G. C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Physica E42(5), 1751–1754 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010).
[CrossRef]

Science (2)

Z. Jacob and V. M. Shalaev, “Physics. Plasmonics goes quantum,” Science334(6055), 463–464 (2011).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other (2)

R. J. Voogd, M. Singh, S. Pereira, A. van de Nes, and J. Braat, “The use of orbital angular momentum of light beams for super-high density optical data storage,” in OSA Annual Meeting FTuG14(Optical Society of America, Rochester, New York, 2004).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics