Abstract

Femtosecond laser exposure produces form and stress birefringence in glasses, mainly controlled by laser polarization and pulse energy, which leads to challenges in certain applications where polarization mode dispersion or birefringence splitting is critical for the desired responses from optical devices. In this paper, parallel laser modification tracks with different geometries were applied to preferentially stress the laser-written waveguides and explore the possibility of tuning the waveguide birefringence in devices fabricated in bulk fused silica glass. Polarization splitting in Bragg grating waveguides showed the laser modification tracks to controllably add or subtract stress to the pre-existing waveguide birefringence, demonstrating independence from the nanograting induced form birefringence and the contributions from material stress. Stressing bars are shown that offer tunable birefringence in the range from ∼0 up to 4.35 × 10−4, possibly enabling great flexibility in designing polarization dependent devices, as well as making polarization independent devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Streltsov and N. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B19, 2496–2504 (2002).
    [CrossRef]
  2. A. Rodenas, L. Maestro, M. Ramirez, G. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys.106, 013110 (2009).
    [CrossRef]
  3. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tuennermann, “Femtosecond laser written stress-induced Nd: Y3 Al5 O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
    [CrossRef]
  4. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express14, 8360–8366 (2006).
    [CrossRef] [PubMed]
  5. V. Bhardwaj, P. Corkum, D. Rayner, C. Hnatovsky, E. Simova, and R. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett.29, 1312–1314 (2004).
    [CrossRef] [PubMed]
  6. E. Bricchi, B. Klappauf, and P. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.29, 119–121 (2004).
    [CrossRef] [PubMed]
  7. Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater.22, 4039–4043 (2010).
    [CrossRef] [PubMed]
  8. M. Beresna and P. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett.35, 1662–1664 (2010).
    [CrossRef] [PubMed]
  9. L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tuennermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
    [CrossRef]
  10. S. Eaton, H. Zhang, M. Ng, J. Li, W. Chen, S. Ho, and P. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008).
    [CrossRef] [PubMed]
  11. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11, 1070–1079 (2003).
    [CrossRef] [PubMed]
  12. V. Kudriašov, E. Gaižauskas, and V. Sirutkaitis, “Birefringent modifications induced by femtosecond filaments in optical glass,” Appl. Phys. A93, 571–576 (2008).
    [CrossRef]
  13. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
    [CrossRef]
  14. G. Marshall, A. Politi, J. Matthews, P. Dekker, M. Ams, M. Withford, and J. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17, 12546–12554 (2009).
    [CrossRef] [PubMed]
  15. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
    [CrossRef]
  16. J. Owens, M. Broome, D. Biggerstaff, M. Goggin, A. Fedrizzi, T. Linjordet, M. Ams, G. Marshall, J. Twamley, M. Withford, and A. White, “Two-photon quantum walks in an elliptical direct-write waveguide array,” New J. Phys.13, 075003 (2011).
    [CrossRef]
  17. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett.108, 010502 (2012).
    [CrossRef] [PubMed]
  18. M. Lobino and J. O’Brien, “Entangled photons on a chip,” Nature469, 43–44 (2011).
    [CrossRef] [PubMed]
  19. J. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nature Photon.3, 687–695 (2009).
    [CrossRef]
  20. L. Fernandes, J. Grenier, P. Herman, J. Aitchison, and P. Marques, “Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica,” Opt. Express19, 11992–11999 (2011).
    [CrossRef] [PubMed]
  21. L. Fernandes, J. Grenier, P. Herman, J. Aitchison, and P. Marques, “Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits,” Opt. Express19, 18294–18301 (2011).
    [CrossRef] [PubMed]
  22. M. Milosevic, P. Matavulj, B. Timotijevic, G. Reed, and G. Mashanovich, “Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering,” J. Lightwave Technol.26, 1840–1846 (2008).
    [CrossRef]
  23. D. Xu, P. Cheben, D. Dalacu, A. Delâge, S. Janz, B. Lamontagne, M. Picard, and W. Ye, “Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of cladding stress,” Opt. Lett.29, 2384–2386 (2004).
    [CrossRef] [PubMed]
  24. H. Zhang, S. Eaton, and P. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32, 2559–2561 (2007).
    [CrossRef] [PubMed]
  25. L. Fernandes, J. Grenier, P. Herman, J. Aitchison, and P. Marques, “Femtosecond laser writing of polarization devices for optical circuits in glass,” in Proceedings of SPIE, 8247, 82470M (2012)
    [CrossRef]
  26. H. Zhang, S. Eaton, J. Li, A. Nejadmalayeri, and P. Herman, “Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses,” Opt. Express15, 4182–4191 (2007).
    [CrossRef] [PubMed]
  27. B. Poumellec, M. Lancry, J. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express16, 18354–18361 (2008).
    [CrossRef] [PubMed]
  28. W. Yang, P. Kazansky, and Y. Svirko, “Non-reciprocal ultrafast laser writing,” Nature Photon.2, 99–104 (2008).
    [CrossRef]
  29. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13, 5676–5681 (2005).
    [CrossRef] [PubMed]
  30. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing,” Opt. Lett.27, 1938–1940 (2002).
    [CrossRef]

2012 (2)

L. Fernandes, J. Grenier, P. Herman, J. Aitchison, and P. Marques, “Femtosecond laser writing of polarization devices for optical circuits in glass,” in Proceedings of SPIE, 8247, 82470M (2012)
[CrossRef]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett.108, 010502 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (4)

M. Beresna and P. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett.35, 1662–1664 (2010).
[CrossRef] [PubMed]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater.22, 4039–4043 (2010).
[CrossRef] [PubMed]

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tuennermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

2009 (4)

A. Rodenas, L. Maestro, M. Ramirez, G. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys.106, 013110 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tuennermann, “Femtosecond laser written stress-induced Nd: Y3 Al5 O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

J. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nature Photon.3, 687–695 (2009).
[CrossRef]

G. Marshall, A. Politi, J. Matthews, P. Dekker, M. Ams, M. Withford, and J. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17, 12546–12554 (2009).
[CrossRef] [PubMed]

2008 (5)

2007 (2)

2006 (1)

2005 (1)

2004 (3)

2003 (2)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11, 1070–1079 (2003).
[CrossRef] [PubMed]

2002 (2)

Aitchison, J.

Ams, M.

Ani-Joseph, S.

Bado, P.

Bellouard, Y.

Beresna, M.

M. Beresna and P. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett.35, 1662–1664 (2010).
[CrossRef] [PubMed]

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater.22, 4039–4043 (2010).
[CrossRef] [PubMed]

Bhardwaj, V.

Biggerstaff, D.

J. Owens, M. Broome, D. Biggerstaff, M. Goggin, A. Fedrizzi, T. Linjordet, M. Ams, G. Marshall, J. Twamley, M. Withford, and A. White, “Two-photon quantum walks in an elliptical direct-write waveguide array,” New J. Phys.13, 075003 (2011).
[CrossRef]

Borrelli, N.

Bricchi, E.

Broome, M.

J. Owens, M. Broome, D. Biggerstaff, M. Goggin, A. Fedrizzi, T. Linjordet, M. Ams, G. Marshall, J. Twamley, M. Withford, and A. White, “Two-photon quantum walks in an elliptical direct-write waveguide array,” New J. Phys.13, 075003 (2011).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Cerullo, G.

Cheben, P.

Chen, F.

A. Rodenas, L. Maestro, M. Ramirez, G. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys.106, 013110 (2009).
[CrossRef]

Chen, W.

Colomb, T.

Corkum, P.

Crespi, A.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett.108, 010502 (2012).
[CrossRef] [PubMed]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

Dalacu, D.

Dekker, P.

Delâge, A.

Depeursinge, C.

Dreisow, F.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tuennermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Dugan, M.

Eaton, S.

Fedrizzi, A.

J. Owens, M. Broome, D. Biggerstaff, M. Goggin, A. Fedrizzi, T. Linjordet, M. Ams, G. Marshall, J. Twamley, M. Withford, and A. White, “Two-photon quantum walks in an elliptical direct-write waveguide array,” New J. Phys.13, 075003 (2011).
[CrossRef]

Fernandes, L.

Franco, M.

Furusawa, A.

J. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nature Photon.3, 687–695 (2009).
[CrossRef]

Gaižauskas, E.

V. Kudriašov, E. Gaižauskas, and V. Sirutkaitis, “Birefringent modifications induced by femtosecond filaments in optical glass,” Appl. Phys. A93, 571–576 (2008).
[CrossRef]

Goggin, M.

J. Owens, M. Broome, D. Biggerstaff, M. Goggin, A. Fedrizzi, T. Linjordet, M. Ams, G. Marshall, J. Twamley, M. Withford, and A. White, “Two-photon quantum walks in an elliptical direct-write waveguide array,” New J. Phys.13, 075003 (2011).
[CrossRef]

Grenier, J.

Heinrich, M.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tuennermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Herman, P.

Hirao, K.

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater.22, 4039–4043 (2010).
[CrossRef] [PubMed]

Hnatovsky, C.

Ho, S.

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tuennermann, “Femtosecond laser written stress-induced Nd: Y3 Al5 O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

Janz, S.

Jaque, D.

A. Rodenas, L. Maestro, M. Ramirez, G. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys.106, 013110 (2009).
[CrossRef]

Kazansky, P.

M. Beresna and P. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett.35, 1662–1664 (2010).
[CrossRef] [PubMed]

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater.22, 4039–4043 (2010).
[CrossRef] [PubMed]

W. Yang, P. Kazansky, and Y. Svirko, “Non-reciprocal ultrafast laser writing,” Nature Photon.2, 99–104 (2008).
[CrossRef]

E. Bricchi, B. Klappauf, and P. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.29, 119–121 (2004).
[CrossRef] [PubMed]

Keil, R.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tuennermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Klappauf, B.

Korovin, A.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tuennermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Kudriašov, V.

V. Kudriašov, E. Gaižauskas, and V. Sirutkaitis, “Birefringent modifications induced by femtosecond filaments in optical glass,” Appl. Phys. A93, 571–576 (2008).
[CrossRef]

Lamontagne, B.

Lancry, M.

Laporta, P.

Li, J.

Linjordet, T.

J. Owens, M. Broome, D. Biggerstaff, M. Goggin, A. Fedrizzi, T. Linjordet, M. Ams, G. Marshall, J. Twamley, M. Withford, and A. White, “Two-photon quantum walks in an elliptical direct-write waveguide array,” New J. Phys.13, 075003 (2011).
[CrossRef]

Lobino, M.

M. Lobino and J. O’Brien, “Entangled photons on a chip,” Nature469, 43–44 (2011).
[CrossRef] [PubMed]

Maestro, L.

A. Rodenas, L. Maestro, M. Ramirez, G. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys.106, 013110 (2009).
[CrossRef]

Marangoni, M.

Marques, P.

Marshall, G.

Mashanovich, G.

Mataloni, P.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett.108, 010502 (2012).
[CrossRef] [PubMed]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

Matavulj, P.

Matthews, J.

Milosevic, M.

Miura, K.

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater.22, 4039–4043 (2010).
[CrossRef] [PubMed]

Mysyrowicz, A.

Nejadmalayeri, A.

Ng, M.

Nolte, S.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tuennermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tuennermann, “Femtosecond laser written stress-induced Nd: Y3 Al5 O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

O’Brien, J.

M. Lobino and J. O’Brien, “Entangled photons on a chip,” Nature469, 43–44 (2011).
[CrossRef] [PubMed]

G. Marshall, A. Politi, J. Matthews, P. Dekker, M. Ams, M. Withford, and J. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17, 12546–12554 (2009).
[CrossRef] [PubMed]

J. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nature Photon.3, 687–695 (2009).
[CrossRef]

Osellame, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett.108, 010502 (2012).
[CrossRef] [PubMed]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing,” Opt. Lett.27, 1938–1940 (2002).
[CrossRef]

Owens, J.

J. Owens, M. Broome, D. Biggerstaff, M. Goggin, A. Fedrizzi, T. Linjordet, M. Ams, G. Marshall, J. Twamley, M. Withford, and A. White, “Two-photon quantum walks in an elliptical direct-write waveguide array,” New J. Phys.13, 075003 (2011).
[CrossRef]

Peschel, U.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tuennermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tuennermann, “Femtosecond laser written stress-induced Nd: Y3 Al5 O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

Picard, M.

Politi, A.

Polli, D.

Poulin, J.

Poumellec, B.

Prade, B.

Qiu, J.

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater.22, 4039–4043 (2010).
[CrossRef] [PubMed]

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tuennermann, “Femtosecond laser written stress-induced Nd: Y3 Al5 O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

Ramirez, L.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tuennermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Ramirez, M.

A. Rodenas, L. Maestro, M. Ramirez, G. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys.106, 013110 (2009).
[CrossRef]

Ramponi, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett.108, 010502 (2012).
[CrossRef] [PubMed]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing,” Opt. Lett.27, 1938–1940 (2002).
[CrossRef]

Rayner, D.

Reed, G.

Richter, S.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tuennermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

Rodenas, A.

A. Rodenas, L. Maestro, M. Ramirez, G. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys.106, 013110 (2009).
[CrossRef]

Roso, L.

A. Rodenas, L. Maestro, M. Ramirez, G. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys.106, 013110 (2009).
[CrossRef]

Said, A.

Sakakura, M.

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater.22, 4039–4043 (2010).
[CrossRef] [PubMed]

Sansoni, L.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett.108, 010502 (2012).
[CrossRef] [PubMed]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

Sciarrino, F.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett.108, 010502 (2012).
[CrossRef] [PubMed]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

Shimotsuma, Y.

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater.22, 4039–4043 (2010).
[CrossRef] [PubMed]

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tuennermann, “Femtosecond laser written stress-induced Nd: Y3 Al5 O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

Silvestri, S. D.

Simova, E.

Sirutkaitis, V.

V. Kudriašov, E. Gaižauskas, and V. Sirutkaitis, “Birefringent modifications induced by femtosecond filaments in optical glass,” Appl. Phys. A93, 571–576 (2008).
[CrossRef]

Spence, D.

Streltsov, A.

Sudrie, L.

Svirko, Y.

W. Yang, P. Kazansky, and Y. Svirko, “Non-reciprocal ultrafast laser writing,” Nature Photon.2, 99–104 (2008).
[CrossRef]

Taccheo, S.

Taylor, R.

Timotijevic, B.

Torchia, G.

A. Rodenas, L. Maestro, M. Ramirez, G. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys.106, 013110 (2009).
[CrossRef]

Tuennermann, A.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tuennermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tuennermann, “Femtosecond laser written stress-induced Nd: Y3 Al5 O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Twamley, J.

J. Owens, M. Broome, D. Biggerstaff, M. Goggin, A. Fedrizzi, T. Linjordet, M. Ams, G. Marshall, J. Twamley, M. Withford, and A. White, “Two-photon quantum walks in an elliptical direct-write waveguide array,” New J. Phys.13, 075003 (2011).
[CrossRef]

Vallone, G.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett.108, 010502 (2012).
[CrossRef] [PubMed]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

Vuckovic, J.

J. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nature Photon.3, 687–695 (2009).
[CrossRef]

White, A.

J. Owens, M. Broome, D. Biggerstaff, M. Goggin, A. Fedrizzi, T. Linjordet, M. Ams, G. Marshall, J. Twamley, M. Withford, and A. White, “Two-photon quantum walks in an elliptical direct-write waveguide array,” New J. Phys.13, 075003 (2011).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Withford, M.

Xu, D.

Yang, W.

W. Yang, P. Kazansky, and Y. Svirko, “Non-reciprocal ultrafast laser writing,” Nature Photon.2, 99–104 (2008).
[CrossRef]

Ye, W.

Zhang, H.

Adv. Mater. (1)

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater.22, 4039–4043 (2010).
[CrossRef] [PubMed]

Appl. Phys. A (3)

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tuennermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100, 1–6 (2010).
[CrossRef]

V. Kudriašov, E. Gaižauskas, and V. Sirutkaitis, “Birefringent modifications induced by femtosecond filaments in optical glass,” Appl. Phys. A93, 571–576 (2008).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A77, 109–111 (2003).
[CrossRef]

Appl. Phys. B (1)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tuennermann, “Femtosecond laser written stress-induced Nd: Y3 Al5 O12 (Nd: YAG) channel waveguide laser,” Appl. Phys. B97, 251–255 (2009).
[CrossRef]

J. Appl. Phys. (1)

A. Rodenas, L. Maestro, M. Ramirez, G. Torchia, L. Roso, F. Chen, and D. Jaque, “Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides,” J. Appl. Phys.106, 013110 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nature (1)

M. Lobino and J. O’Brien, “Entangled photons on a chip,” Nature469, 43–44 (2011).
[CrossRef] [PubMed]

Nature Photon. (2)

J. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nature Photon.3, 687–695 (2009).
[CrossRef]

W. Yang, P. Kazansky, and Y. Svirko, “Non-reciprocal ultrafast laser writing,” Nature Photon.2, 99–104 (2008).
[CrossRef]

New J. Phys. (1)

J. Owens, M. Broome, D. Biggerstaff, M. Goggin, A. Fedrizzi, T. Linjordet, M. Ams, G. Marshall, J. Twamley, M. Withford, and A. White, “Two-photon quantum walks in an elliptical direct-write waveguide array,” New J. Phys.13, 075003 (2011).
[CrossRef]

Opt. Express (9)

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11, 1070–1079 (2003).
[CrossRef] [PubMed]

S. Eaton, H. Zhang, M. Ng, J. Li, W. Chen, S. Ho, and P. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008).
[CrossRef] [PubMed]

L. Fernandes, J. Grenier, P. Herman, J. Aitchison, and P. Marques, “Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica,” Opt. Express19, 11992–11999 (2011).
[CrossRef] [PubMed]

L. Fernandes, J. Grenier, P. Herman, J. Aitchison, and P. Marques, “Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits,” Opt. Express19, 18294–18301 (2011).
[CrossRef] [PubMed]

B. Poumellec, M. Lancry, J. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express16, 18354–18361 (2008).
[CrossRef] [PubMed]

G. Marshall, A. Politi, J. Matthews, P. Dekker, M. Ams, M. Withford, and J. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express17, 12546–12554 (2009).
[CrossRef] [PubMed]

M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13, 5676–5681 (2005).
[CrossRef] [PubMed]

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express14, 8360–8366 (2006).
[CrossRef] [PubMed]

H. Zhang, S. Eaton, J. Li, A. Nejadmalayeri, and P. Herman, “Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses,” Opt. Express15, 4182–4191 (2007).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (2)

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Two-particle bosonic-fermionic quantum walk via integrated photonics,” Phys. Rev. Lett.108, 010502 (2012).
[CrossRef] [PubMed]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105, 200503 (2010).
[CrossRef]

Proceedings of SPIE (1)

L. Fernandes, J. Grenier, P. Herman, J. Aitchison, and P. Marques, “Femtosecond laser writing of polarization devices for optical circuits in glass,” in Proceedings of SPIE, 8247, 82470M (2012)
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (3321 KB)     
» Media 2: MOV (3577 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic arrangement for the stressed waveguide fabrication where E⃗V and E⃗H indicate the electric field orientation for Vertical, V, and Horizontal, H, waveguide polarization eigenmodes, while E⃗Par|| and E⃗Per represent the parallel and perpendicular polarizations of the writing laser, respectively. The insets show microscope end view images of the Bragg grating waveguides sandwiched with vertical (left) and horizontal (right) stress tracks ( Media 1).

Fig. 2
Fig. 2

Optical microscope pictures of the end facets of the waveguides with the horizontal stress geometry (a, b, c) and the vertical stress geometry (d, e, f). (a, d) Unpolarized picture with illumination adjusted to observe the waveguide regions. (b, e) Images with two crossed polarizers parallel and perpendicular to the glass surface. (c, f) Images with two crossed polarizers both on 45° angle with the glass surface. In all the cross polarized pictures the green cross indicates the orientation of the polarizers. A mode profile is also shown with its position indicated relative to the waveguide structure.

Fig. 3
Fig. 3

V and H polarized transmission spectra for BGWs fabricated with 150 nJ of pulse energy and written with parallel (a, c) and perpendicular (b, d) polarization of the writing laser ( Media 2). (a) Reference BGW, with parallel polarization writing. (b) Reference BGW, with perpendicular polarization writing. (c) BGW stressed by two 250 nJ tracks in the horizontal configuration with 20μm separation. (d) BGW stressed by two 200 nJ tracks in the horizontal configuration with 13μm separation.

Fig. 4
Fig. 4

Birefringence as a function of the stress tracks separation for (a) horizontal geometry and (b) vertical geometry and various applied laser energies. The black squares at ∞ separation represent the reference birefringence measured for a single BGW without stress modification.

Fig. 5
Fig. 5

Birefringence as a function of the stress track separation for (a) horizontal geometry and (b) vertical geometry, for 200 nJ pulse energy. The blue circles are the results for the fabrication made with parallel polarization of the writing laser, E⃗Par||, while the green pentagons are the results for the perpendicular polarization, E⃗Per, case. The squares at ∞ separation represent the reference BGWs for both writing polarizations.

Fig. 6
Fig. 6

Relative effective index of the BGWs, with respect to the effective index of the reference H mode (1.4454), for both V (blue triangles) and H (red inverted triangles) polarization modes as a function of the stress tracks separation. (a) is for the horizontal geometry and (b) is for the vertical geometry, both made with the parallel polarized writing laser and stress tracks produced with 200 nJ pulse energy.

Tables (2)

Tables Icon

Table 1 Mode Field Diameters (MFDs), for reference waveguides, BGWs, and examples with different stress track geometries.

Tables Icon

Table 2 Summary of maximum and minimum birefringence and minimum zero-order half-wave plate lengths for different waveguide writing conditions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ λ B 2 Λ

Metrics