Abstract

We propose and experimentally demonstrate single-carrier adaptive frequency-domain equalization (SC-FDE) to mitigate multipath interference (MPI) for the transmission of the fundamental mode in a few-mode fiber. The FDE approach reduces computational complexity significantly compared to the time-domain equalization (TDE) approach while maintaining the same performance. Both FDE and TDE methods are evaluated by simulating long-haul fundamental-mode transmission using a few-mode fiber. For the fundamental mode operation, the required tap length of the equalizer depends on the differential mode group delay (DMGD) of a single span rather than DMGD of the entire link.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, “Long distance transmission in few-mode fibers,” Opt. Express18(12), 13250–13257 (2010).
    [CrossRef] [PubMed]
  2. F. Yaman, N. Bai, Y. K. Huang, M. F. Huang, B. Zhu, T. Wang, and G. Li, “10 x 112Gb/s PDM-QPSK transmission over 5032 km in few-mode fibers,” Opt. Express18(20), 21342–21349 (2010).
    [CrossRef] [PubMed]
  3. J. D. Downie, J. E. Hurley, D. V. Kuksenkov, C. M. Lynn, A. E. Korolev, and V. N. Nazarov, “Transmission of 112 Gb/s PM-QPSK signals over up to 635 km of multimode optical fiber,” Opt. Express19(26), B363–B369 (2011).
    [CrossRef] [PubMed]
  4. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6 × 6 MIMO Processing,” J. Lightwave Technol.30(4), 521–531 (2012).
    [CrossRef]
  5. N. Bai, E. Ip, Y. K. Huang, E. Mateo, F. Yaman, M. J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. Lau, H. Y. Tam, C. Lu, Y. Luo, G. D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express20(3), 2668–2680 (2012).
    [CrossRef] [PubMed]
  6. B. Inan, B. Spinnler, F. Ferreira, D. van den Borne, A. Lobato, S. Adhikari, V. A. J. M. Sleiffer, M. Kuschnerov, N. Hanik, and S. L. Jansen, “DSP complexity of mode-division multiplexed receivers,” Opt. Express20(10), 10859–10869 (2012).
    [CrossRef] [PubMed]
  7. N. Bai and G. Li, “Adaptive Frequency Domain Equalization for Mode-Division Multiplexed Transmission,” in IEEE Summer Topical Conference, Seattle, Paper MC4.3 (2012).
  8. M. S. Faruk and K. Kikuchi, “Adaptive frequency-domain equalization in digital coherent optical receivers,” Opt. Express19(13), 12789–12798 (2011).
    [CrossRef] [PubMed]
  9. S. Haykin, Adaptive filter theory, 4th ed. (Prentice-Halll, 2001), Chap. 7.
  10. Y. Namihira, Y. Horiuchi, S. Ryu, K. Mochizuki, and H. Wakabayashi, “Dynamic polarization fluctuation characteristics of optical fiber submarine cables under various environmental conditions,” J. Lightwave Technol.6(5), 728–738 (1988).
    [CrossRef]
  11. F. Yaman, E. Mateo, and T. Wang, “Impact of Modal Crosstalk and Multi-Path Interference on Few-Mode Fiber Transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu1D.2.
  12. C. Koebele, M. Salsi, L. Milord, R. Ryf, C. A. Bolle, P. Sillard, S. Bigo, and G. Charlet, “40km Transmission of Five Mode Division Multiplexed Data Streams at 100Gb/s with low MIMO-DSP Complexity,” in European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.3.

2012 (3)

2011 (2)

2010 (2)

1988 (1)

Y. Namihira, Y. Horiuchi, S. Ryu, K. Mochizuki, and H. Wakabayashi, “Dynamic polarization fluctuation characteristics of optical fiber submarine cables under various environmental conditions,” J. Lightwave Technol.6(5), 728–738 (1988).
[CrossRef]

Adhikari, S.

Bai, N.

Bickham, S.

Bolle, C.

Burrows, E. C.

Downie, J. D.

Esmaeelpour, M.

Essiambre, R.

Faruk, M. S.

Ferreira, F.

Gnauck, A. H.

Hanik, N.

Horiuchi, Y.

Y. Namihira, Y. Horiuchi, S. Ryu, K. Mochizuki, and H. Wakabayashi, “Dynamic polarization fluctuation characteristics of optical fiber submarine cables under various environmental conditions,” J. Lightwave Technol.6(5), 728–738 (1988).
[CrossRef]

Huang, M. F.

Huang, Y. K.

Hurley, J. E.

Inan, B.

Ip, E.

Jansen, S. L.

Kikuchi, K.

Korolev, A. E.

Kuksenkov, D. V.

Kuschnerov, M.

Lau, A. P.

Li, G.

Li, M. J.

Liñares, J.

Lingle, R.

Lobato, A.

Lu, C.

Luo, Y.

Lynn, C. M.

Man Chung, K.

Mateo, E.

McCurdy, A. H.

Mochizuki, K.

Y. Namihira, Y. Horiuchi, S. Ryu, K. Mochizuki, and H. Wakabayashi, “Dynamic polarization fluctuation characteristics of optical fiber submarine cables under various environmental conditions,” J. Lightwave Technol.6(5), 728–738 (1988).
[CrossRef]

Montero, C.

Moreno, V.

Mumtaz, S.

Namihira, Y.

Y. Namihira, Y. Horiuchi, S. Ryu, K. Mochizuki, and H. Wakabayashi, “Dynamic polarization fluctuation characteristics of optical fiber submarine cables under various environmental conditions,” J. Lightwave Technol.6(5), 728–738 (1988).
[CrossRef]

Nazarov, V. N.

Peckham, D. W.

Peng, G. D.

Prieto, X.

Randel, S.

Ryf, R.

Ryu, S.

Y. Namihira, Y. Horiuchi, S. Ryu, K. Mochizuki, and H. Wakabayashi, “Dynamic polarization fluctuation characteristics of optical fiber submarine cables under various environmental conditions,” J. Lightwave Technol.6(5), 728–738 (1988).
[CrossRef]

Sierra, A.

Sleiffer, V. A. J. M.

Spinnler, B.

Tam, H. Y.

Ten, S.

Tse, V.

van den Borne, D.

Wakabayashi, H.

Y. Namihira, Y. Horiuchi, S. Ryu, K. Mochizuki, and H. Wakabayashi, “Dynamic polarization fluctuation characteristics of optical fiber submarine cables under various environmental conditions,” J. Lightwave Technol.6(5), 728–738 (1988).
[CrossRef]

Wang, T.

Winzer, P. J.

Yaman, F.

Zhu, B.

J. Lightwave Technol. (2)

Y. Namihira, Y. Horiuchi, S. Ryu, K. Mochizuki, and H. Wakabayashi, “Dynamic polarization fluctuation characteristics of optical fiber submarine cables under various environmental conditions,” J. Lightwave Technol.6(5), 728–738 (1988).
[CrossRef]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6 × 6 MIMO Processing,” J. Lightwave Technol.30(4), 521–531 (2012).
[CrossRef]

Opt. Express (6)

Other (4)

F. Yaman, E. Mateo, and T. Wang, “Impact of Modal Crosstalk and Multi-Path Interference on Few-Mode Fiber Transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu1D.2.

C. Koebele, M. Salsi, L. Milord, R. Ryf, C. A. Bolle, P. Sillard, S. Bigo, and G. Charlet, “40km Transmission of Five Mode Division Multiplexed Data Streams at 100Gb/s with low MIMO-DSP Complexity,” in European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.3.

N. Bai and G. Li, “Adaptive Frequency Domain Equalization for Mode-Division Multiplexed Transmission,” in IEEE Summer Topical Conference, Seattle, Paper MC4.3 (2012).

S. Haykin, Adaptive filter theory, 4th ed. (Prentice-Halll, 2001), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Block diagram of SC-FDE

Fig. 2
Fig. 2

(a) Q2 factor Vs. the number of total filter taps (b) Magnitude of sub-filter tap weights for 30 × 100km FMF transmission link at OSNR of 17dB.

Fig. 3
Fig. 3

Q2 factor Vs. OSNR.

Fig. 4
Fig. 4

Q2 factor Vs. distance and the constellation diagrams for two Q2 values are also shown on the right hand side.

Fig. 5
Fig. 5

Impulse response of a FMF at 1550nm.

Fig. 6
Fig. 6

Transmission experiment setup

Fig. 7
Fig. 7

Q2 Vs OSNR and the constellation diagrams for two Q2 values are also shown on the right hand side

Fig. 8
Fig. 8

Typical sub-filter (odd) tap weights for FDE.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C P FDE =6log( L FDE )+10
C P TDE =2 L TDE +2

Metrics