Abstract

Diffractive optical elements serve an important function in many dynamic and static optical systems. Multilayered diffractive elements offer powerful opportunity to harness both phase and amplitude modulation for benefits in diffraction efficiency and beam shaping. However, multilayered combinations have been difficult to fabricate and provide only weak diffraction for phase gratings with low refractive index contrast. Femtosecond laser writing of finely-pitched multilayer volume gratings was optimized in bulk fused silica. We identify and quantify an optimum layer-to-layer separation according to Talbot self-imaging planes and present systematic experimental validation of this new approach to enhance otherwise weakly diffracting volume gratings.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caufield and S. Lu, The Applications of Holography (Wiley-Interscience, 1970).
  2. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt.26(20), 4351–4357 (1987).
    [CrossRef] [PubMed]
  3. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett.24(12), 811–813 (1999).
    [CrossRef] [PubMed]
  4. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909 (1969).
  5. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE Press, 2004).
  6. L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” J.Hologr. Speckle5(1), 77–84 (2009).
    [CrossRef]
  7. P. Srisungsitthisunti, O.K. Ersoy, and X. Xu, “Volume Fresnel zone plates fabricated by femtosecond laser direct writing,” Appl. Phys. Lett.90, 11104 (2007).
  8. C. Yang and P. Yeh, “Form birefringence of volume gratings in photopolymers,” Appl. Phys. Lett.69(23), 3468–3470 (1996).
    [CrossRef]
  9. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.29(1), 119–121 (2004).
    [CrossRef] [PubMed]
  10. T. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics290, 188–193 (2009).
  11. J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B86(1), 151–154 (2006).
    [CrossRef]
  12. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett.30(4), 352–354 (2005).
    [CrossRef] [PubMed]
  13. H. Misawa and S. Juodkazis, 3D Laser Microfabrication, (Wiley-VCH Verlag GmbH & Co., 2006).
  14. T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E.-B. Kley, and A. Tünnermann, “Reflection-reduced encapsulated transmission grating,” Opt. Lett.33(17), 1972–1974 (2008).
    [CrossRef] [PubMed]
  15. G. P. Nordin, R. V. Johnson, and A. R. Tanguay., “Diffraction properties of stratified volume holographic optical elements,” Appl. Opt.42, 5274–5283 (2003).
    [PubMed]
  16. H. Bartelt, “Computer-generated holographic component with optimum light efficiency,” Appl. Opt.23(10), 1499–1502 (1984).
    [CrossRef] [PubMed]
  17. S. Borgsmüller, S. Noehte, C. Dietrich, T. Kresse, and R. Männer, “Computer-generated stratified diffractive optical elements,” Appl. Opt.42(26), 5274–5283 (2003).
    [CrossRef] [PubMed]
  18. V. N. Malysh, O. I. Ovcharenko, and N. Osovitskii, “Light diffraction by a layered structure with periodically modulated interfaces,” Opt. Spectrosc.58, 513–516 (1985).
  19. L. E. Hargrove, E. A. Hiedemann, and R. Mertens, “Diffraction of light by two spatially separated parallel ultrasonic waves of different frequency,” Z. Phys.167(3), 326–336 (1962).
    [CrossRef]
  20. Y. Qiu, Y. Sheng, and C. Beaulieu, “Optimal phase mask for Fiber Brag Grating fabrication,” J. Lightwave Technol.17, 2366–2370 (1999).
  21. D. A. Gremaux and N. C. Gallagher, “Limits of scalar diffraction theory for conducting gratings,” Appl. Opt.32(11), 1948–1953 (1993).
    [CrossRef] [PubMed]
  22. D. Chanda and P. R. Herman, “Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates,” Appl. Phys. Lett.91(6), 061122 (2007).
    [CrossRef]
  23. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71(7), 882–884 (1997).
    [CrossRef]
  24. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  25. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
    [CrossRef]
  26. A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93(2), 021921 (2008).
    [CrossRef]
  27. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys., A Mater. Sci. Process.83(2), 337–340 (2006).
    [CrossRef]
  28. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011).
    [CrossRef]

2011

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011).
[CrossRef]

2009

T. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics290, 188–193 (2009).

L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” J.Hologr. Speckle5(1), 77–84 (2009).
[CrossRef]

2008

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93(2), 021921 (2008).
[CrossRef]

T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E.-B. Kley, and A. Tünnermann, “Reflection-reduced encapsulated transmission grating,” Opt. Lett.33(17), 1972–1974 (2008).
[CrossRef] [PubMed]

2007

D. Chanda and P. R. Herman, “Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates,” Appl. Phys. Lett.91(6), 061122 (2007).
[CrossRef]

P. Srisungsitthisunti, O.K. Ersoy, and X. Xu, “Volume Fresnel zone plates fabricated by femtosecond laser direct writing,” Appl. Phys. Lett.90, 11104 (2007).

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

2006

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B86(1), 151–154 (2006).
[CrossRef]

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys., A Mater. Sci. Process.83(2), 337–340 (2006).
[CrossRef]

2005

2004

2003

1999

1997

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71(7), 882–884 (1997).
[CrossRef]

1996

C. Yang and P. Yeh, “Form birefringence of volume gratings in photopolymers,” Appl. Phys. Lett.69(23), 3468–3470 (1996).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

1993

1987

1985

V. N. Malysh, O. I. Ovcharenko, and N. Osovitskii, “Light diffraction by a layered structure with periodically modulated interfaces,” Opt. Spectrosc.58, 513–516 (1985).

1984

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909 (1969).

1962

L. E. Hargrove, E. A. Hiedemann, and R. Mertens, “Diffraction of light by two spatially separated parallel ultrasonic waves of different frequency,” Z. Phys.167(3), 326–336 (1962).
[CrossRef]

Audouard, E.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93(2), 021921 (2008).
[CrossRef]

Bachelier, G.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Balberg, M.

Barbastathis, G.

Bartelt, H.

Beaulieu, C.

Bonse, J.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93(2), 021921 (2008).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Borgsmüller, S.

Brady, D. J.

Bricchi, E.

Brückner, F.

Chanda, D.

D. Chanda and P. R. Herman, “Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates,” Appl. Phys. Lett.91(6), 061122 (2007).
[CrossRef]

Chang, S.

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B86(1), 151–154 (2006).
[CrossRef]

Clausnitzer, T.

Davis, K. M.

Dietrich, C.

Eaton, S. M.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011).
[CrossRef]

Ehrentraut, L.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Ersoy, O.K.

P. Srisungsitthisunti, O.K. Ersoy, and X. Xu, “Volume Fresnel zone plates fabricated by femtosecond laser direct writing,” Appl. Phys. Lett.90, 11104 (2007).

Flueraru, C.

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B86(1), 151–154 (2006).
[CrossRef]

Gallagher, N. C.

Gawelda, W.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Gerke, T.

T. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics290, 188–193 (2009).

Glebov, L. B.

L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” J.Hologr. Speckle5(1), 77–84 (2009).
[CrossRef]

Glezer, E. N.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71(7), 882–884 (1997).
[CrossRef]

Gremaux, D. A.

Hargrove, L. E.

L. E. Hargrove, E. A. Hiedemann, and R. Mertens, “Diffraction of light by two spatially separated parallel ultrasonic waves of different frequency,” Z. Phys.167(3), 326–336 (1962).
[CrossRef]

Hashimoto, T.

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys., A Mater. Sci. Process.83(2), 337–340 (2006).
[CrossRef]

Heinze, R.

Herman, P. R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011).
[CrossRef]

D. Chanda and P. R. Herman, “Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates,” Appl. Phys. Lett.91(6), 061122 (2007).
[CrossRef]

Hertel, I. V.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93(2), 021921 (2008).
[CrossRef]

Hiedemann, E. A.

L. E. Hargrove, E. A. Hiedemann, and R. Mertens, “Diffraction of light by two spatially separated parallel ultrasonic waves of different frequency,” Z. Phys.167(3), 326–336 (1962).
[CrossRef]

Hirao, K.

Johnson, R. V.

Juodkazis, S.

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys., A Mater. Sci. Process.83(2), 337–340 (2006).
[CrossRef]

Kämpfe, T.

Kazansky, P. G.

Klappauf, B. G.

Kley, E.-B.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909 (1969).

Kresse, T.

Kuroiwa, Y.

Liu, J.

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B86(1), 151–154 (2006).
[CrossRef]

Lu, Z.

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B86(1), 151–154 (2006).
[CrossRef]

Malysh, V. N.

V. N. Malysh, O. I. Ovcharenko, and N. Osovitskii, “Light diffraction by a layered structure with periodically modulated interfaces,” Opt. Spectrosc.58, 513–516 (1985).

Männer, R.

Mauclair, C.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93(2), 021921 (2008).
[CrossRef]

Mazur, E.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71(7), 882–884 (1997).
[CrossRef]

Mermillod-Blondin, A.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93(2), 021921 (2008).
[CrossRef]

Mertens, R.

L. E. Hargrove, E. A. Hiedemann, and R. Mertens, “Diffraction of light by two spatially separated parallel ultrasonic waves of different frequency,” Z. Phys.167(3), 326–336 (1962).
[CrossRef]

Misawa, H.

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys., A Mater. Sci. Process.83(2), 337–340 (2006).
[CrossRef]

Miura, K.

Narita, Y.

Ng, M. L.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011).
[CrossRef]

Noehte, S.

Nordin, G. P.

Osellame, R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011).
[CrossRef]

Osovitskii, N.

V. N. Malysh, O. I. Ovcharenko, and N. Osovitskii, “Light diffraction by a layered structure with periodically modulated interfaces,” Opt. Spectrosc.58, 513–516 (1985).

Ovcharenko, O. I.

V. N. Malysh, O. I. Ovcharenko, and N. Osovitskii, “Light diffraction by a layered structure with periodically modulated interfaces,” Opt. Spectrosc.58, 513–516 (1985).

Piestun, R.

T. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics290, 188–193 (2009).

Puerto, D.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Qiu, Y.

Rosenfeld, A.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93(2), 021921 (2008).
[CrossRef]

Sheng, Y.

Siegel, J.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Solis, J.

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

Srisungsitthisunti, P.

P. Srisungsitthisunti, O.K. Ersoy, and X. Xu, “Volume Fresnel zone plates fabricated by femtosecond laser direct writing,” Appl. Phys. Lett.90, 11104 (2007).

Stoian, R.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93(2), 021921 (2008).
[CrossRef]

Sugimoto, N.

Sun, F.

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B86(1), 151–154 (2006).
[CrossRef]

Takeshima, N.

Tanaka, S.

Tanguay, A. R.

Tricoles, G.

Tünnermann, A.

Xiao, G.

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B86(1), 151–154 (2006).
[CrossRef]

Xu, X.

P. Srisungsitthisunti, O.K. Ersoy, and X. Xu, “Volume Fresnel zone plates fabricated by femtosecond laser direct writing,” Appl. Phys. Lett.90, 11104 (2007).

Yang, C.

C. Yang and P. Yeh, “Form birefringence of volume gratings in photopolymers,” Appl. Phys. Lett.69(23), 3468–3470 (1996).
[CrossRef]

Yeh, P.

C. Yang and P. Yeh, “Form birefringence of volume gratings in photopolymers,” Appl. Phys. Lett.69(23), 3468–3470 (1996).
[CrossRef]

Zhang, Z.

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B86(1), 151–154 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. B

J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B86(1), 151–154 (2006).
[CrossRef]

Appl. Phys. Lett.

P. Srisungsitthisunti, O.K. Ersoy, and X. Xu, “Volume Fresnel zone plates fabricated by femtosecond laser direct writing,” Appl. Phys. Lett.90, 11104 (2007).

C. Yang and P. Yeh, “Form birefringence of volume gratings in photopolymers,” Appl. Phys. Lett.69(23), 3468–3470 (1996).
[CrossRef]

J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93(2), 021921 (2008).
[CrossRef]

D. Chanda and P. R. Herman, “Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates,” Appl. Phys. Lett.91(6), 061122 (2007).
[CrossRef]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71(7), 882–884 (1997).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys., A Mater. Sci. Process.83(2), 337–340 (2006).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909 (1969).

J. Lightwave Technol.

J. Non-Cryst. Solids

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011).
[CrossRef]

J.Hologr. Speckle

L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” J.Hologr. Speckle5(1), 77–84 (2009).
[CrossRef]

Nat. Photonics

T. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics290, 188–193 (2009).

Opt. Lett.

Opt. Spectrosc.

V. N. Malysh, O. I. Ovcharenko, and N. Osovitskii, “Light diffraction by a layered structure with periodically modulated interfaces,” Opt. Spectrosc.58, 513–516 (1985).

Z. Phys.

L. E. Hargrove, E. A. Hiedemann, and R. Mertens, “Diffraction of light by two spatially separated parallel ultrasonic waves of different frequency,” Z. Phys.167(3), 326–336 (1962).
[CrossRef]

Other

H. Misawa and S. Juodkazis, 3D Laser Microfabrication, (Wiley-VCH Verlag GmbH & Co., 2006).

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE Press, 2004).

H. J. Caufield and S. Lu, The Applications of Holography (Wiley-Interscience, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

FDTD calculation showing the interference intensity pattern of volume phase gratings of d = 20 μm length (along z-axis) and 50% duty cycle with period, Λ = 1 μm (along x-axis) for refractive index contrasts (a) Δn = 0.46, (b) 0.16, (c) 0.06, and (d) 0.02. The white and red arrows represent, respectively, the Talbot oscillation distance, c, and the propagation distance for accumulating 2π-phase contrast, dΦ = 2π, along the phase gratings. (e) The corresponding projected efficiency of combined first order beams for varying grating thickness and (f) the propagation distance for the first expected peak calculated versus probe wavelength for the Δn range in (f). The half-Talbot oscillation length, c/2, is also shown in (f). (g) Minimum refractive index contrast in glass gratings (background nr = 1.46) before Talbot oscillations limit diffraction efficiency at various wavelengths.

Fig. 2
Fig. 2

A plane wave (λ = 532 nm) incident from the bottom (z = 0) generates intensity interference patterns through (a) a thick continuous phase grating of 20 μm thickness, (b) 8 layers of 7 μm thick gratings, and (c) 15 layers of 7 μm thick gratings, each with 1 μm longitudinal period and Δn = 0.02 refractive index contrast. Colour scale bar represents 0 to 3.6 intensity normalized to an incident intensity, I0 = 1. The hatched zones indicate the position of the higher refractive index volumes. Light is incident from the bottom.

Fig. 3
Fig. 3

Calculated (red triangle) and measured (blue square) efficiency of both first order diffracted beams (λ = 532 nm, Λ = 1 μm, Δn = 0.025) for (a) 2 layers of 7 μm thick gratings with increasing layer-to-layer separation and (b) increasing number of layers, with ideal layer-to-layer separation, 2c. Solid lines in (a) are sinusoidal fits to the data.

Fig. 4
Fig. 4

(a) Optical microscope end view of refractive index modification zone formed by a single laser track. Bright and dark regions correspond to respective positive and negative index change. (b) Visualization of a light beam diffracting through a multilayered phase grating structure. (c) Optical microscope end view of (right) a laser fabricated 10 layer grating structure and (left) a magnified view of two rows of Λ = 1μm period tracks with layer-to-layer separation, l = 15μm. (d) Image of farfield diffraction (0th and ± 1st orders) from a single grating layer and 10 grating layers at an ideal 2c layer-to-layer separation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ=2π(Δn)d/λ
c= (λ/ n r ) / (1 1 (λ/ n r Λ ) 2 )
c r = 2( n r Λ ) 2 /λ .

Metrics