Abstract

Active Bragg angle compensation is demonstrated for shaping ultrafast, mid-infrared pulses. The effects of angular dispersion introduced by the acousto-optic modulator on the temporal characteristics of the pulse are measured by autocorrelating the output from the pulse shaper. The time duration of the output pulses were measured to be thirty times shorter than pulses produced with a constant frequency amplitude waveform. This approach acts to mitigate angular dispersion in Bragg-regime acousto-optic devices, thus affording the ability to shape ultrafast pulses of light with broad bandwidths that are centered at mid-IR wavelengths and longer.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys.386(1-3), 1–22 (2011).
    [CrossRef]
  2. A. F. Fidler, E. Harel, and G. S. Engel, “Dissecting Hidden Couplings Using Fifth-Order Three-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett.1(19), 2876–2880 (2010).
    [CrossRef]
  3. K. L. M. Lewis and J. P. Ogilvie, “Probing Photosynthetic Energy and Charge Transfer with Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett.3(4), 503–510 (2012).
    [CrossRef]
  4. D. B. Spry, A. Goun, K. Glusac, D. E. Moilanen, and M. D. Fayer, “Proton transport and the water environment in nafion fuel cell membranes and AOT reverse micelles,” J. Am. Chem. Soc.129(26), 8122–8130 (2007).
    [CrossRef] [PubMed]
  5. J. Bredenbeck, J. Helbing, and P. Hamm, “Labeling vibrations by light: ultrafast transient 2D-IR spectroscopy tracks vibrational modes during photoinduced charge transfer,” J. Am. Chem. Soc.126(4), 990–991 (2004).
    [CrossRef] [PubMed]
  6. R. D. Pensack, K. M. Banyas, L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials,” Phys. Chem. Chem. Phys.11(15), 2575–2591 (2009).
    [CrossRef] [PubMed]
  7. A. T. Krummel and M. T. Zanni, “DNA vibrational coupling revealed with two-dimensional infrared spectroscopy: insight into why vibrational spectroscopy is sensitive to DNA structure,” J. Phys. Chem. B110(28), 13991–14000 (2006).
    [CrossRef] [PubMed]
  8. M. Yang, Ł. Szyc, and T. Elsaesser, “Vibrational dynamics of the water shell of DNA studied by femtosecond two-dimensional infrared spectroscopy,” J. Photochem. Photobiol., A234, 49–56 (2012).
    [CrossRef]
  9. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A.104(36), 14197–14202 (2007).
    [CrossRef] [PubMed]
  10. E. H. G. Backus, R. Bloem, P. M. Donaldson, J. A. Ihalainen, R. Pfister, B. Paoli, A. Caflisch, and P. Hamm, “2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix,” J. Phys. Chem. B114(10), 3735–3740 (2010).
    [CrossRef] [PubMed]
  11. Z. Ganim, K. C. Jones, and A. Tokmakoff, “Insulin dimer dissociation and unfolding revealed by amide I two-dimensional infrared spectroscopy,” Phys. Chem. Chem. Phys.12(14), 3579–3588 (2010).
    [CrossRef] [PubMed]
  12. J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently Controlled Ultrafast Four-Wave Mixing Spectroscopy,” J. Phys. Chem. A111(23), 4873–4883 (2007).
    [CrossRef] [PubMed]
  13. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” in Ultrafast Phenomena XVI, Springer Series in Chemical Physics (Springer, 2009), Vol. 92, pp. 956–958.
  14. M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B14(9), 2348–2358 (1997).
    [CrossRef]
  15. T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett.32(22), 3330–3332 (2007).
    [CrossRef] [PubMed]
  16. P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett.35(12), 1962–1964 (2010).
    [CrossRef] [PubMed]
  17. M. Cheng, A. Reynolds, H. Widgren, and M. Khalil, “Generation of tunable octave-spanning mid-infrared pulses by filamentation in gas media,” Opt. Lett.37(11), 1787–1789 (2012).
    [CrossRef] [PubMed]
  18. C. Calabrese, A. M. Stingel, L. Shen, and P. B. Petersen, “Ultrafast continuum mid-infrared spectroscopy: probing the entire vibrational spectrum in a single laser shot with femtosecond time resolution,” Opt. Lett.37(12), 2265–2267 (2012).
    [CrossRef] [PubMed]
  19. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
    [CrossRef] [PubMed]
  20. S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11(5), 748–761 (2009).
    [CrossRef] [PubMed]
  21. C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-Dimensional Ultrafast Fourier Transform Spectroscopy in the Deep Ultraviolet,” Opt. Express17(21), 18788–18793 (2009).
    [CrossRef] [PubMed]
  22. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).
  23. E. I. Gordon, “A review of acoustooptical deflection and modulation devices,” Proc. IEEE54(10), 1391–1401 (1966).
    [CrossRef]
  24. W. Klein and B. Cook, “Unified Approach to Ultrasonic Light Diffraction,” IEEE Trans. Sonics Ultrason.14(3), 123–134 (1967).
    [CrossRef]
  25. S.-H. Shim, D. B. Strasfeld, and M. T. Zanni, “Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses,” Opt. Express14(26), 13120–13130 (2006).
    [CrossRef] [PubMed]
  26. S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett.31(6), 838–840 (2006).
    [CrossRef] [PubMed]
  27. C. T. Middleton, A. M. Woys, S. S. Mukherjee, and M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods52(1), 12–22 (2010).
    [CrossRef] [PubMed]

2012 (4)

K. L. M. Lewis and J. P. Ogilvie, “Probing Photosynthetic Energy and Charge Transfer with Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett.3(4), 503–510 (2012).
[CrossRef]

M. Yang, Ł. Szyc, and T. Elsaesser, “Vibrational dynamics of the water shell of DNA studied by femtosecond two-dimensional infrared spectroscopy,” J. Photochem. Photobiol., A234, 49–56 (2012).
[CrossRef]

M. Cheng, A. Reynolds, H. Widgren, and M. Khalil, “Generation of tunable octave-spanning mid-infrared pulses by filamentation in gas media,” Opt. Lett.37(11), 1787–1789 (2012).
[CrossRef] [PubMed]

C. Calabrese, A. M. Stingel, L. Shen, and P. B. Petersen, “Ultrafast continuum mid-infrared spectroscopy: probing the entire vibrational spectrum in a single laser shot with femtosecond time resolution,” Opt. Lett.37(12), 2265–2267 (2012).
[CrossRef] [PubMed]

2011 (1)

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys.386(1-3), 1–22 (2011).
[CrossRef]

2010 (5)

A. F. Fidler, E. Harel, and G. S. Engel, “Dissecting Hidden Couplings Using Fifth-Order Three-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett.1(19), 2876–2880 (2010).
[CrossRef]

P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett.35(12), 1962–1964 (2010).
[CrossRef] [PubMed]

E. H. G. Backus, R. Bloem, P. M. Donaldson, J. A. Ihalainen, R. Pfister, B. Paoli, A. Caflisch, and P. Hamm, “2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix,” J. Phys. Chem. B114(10), 3735–3740 (2010).
[CrossRef] [PubMed]

Z. Ganim, K. C. Jones, and A. Tokmakoff, “Insulin dimer dissociation and unfolding revealed by amide I two-dimensional infrared spectroscopy,” Phys. Chem. Chem. Phys.12(14), 3579–3588 (2010).
[CrossRef] [PubMed]

C. T. Middleton, A. M. Woys, S. S. Mukherjee, and M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods52(1), 12–22 (2010).
[CrossRef] [PubMed]

2009 (3)

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11(5), 748–761 (2009).
[CrossRef] [PubMed]

C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-Dimensional Ultrafast Fourier Transform Spectroscopy in the Deep Ultraviolet,” Opt. Express17(21), 18788–18793 (2009).
[CrossRef] [PubMed]

R. D. Pensack, K. M. Banyas, L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials,” Phys. Chem. Chem. Phys.11(15), 2575–2591 (2009).
[CrossRef] [PubMed]

2007 (4)

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A.104(36), 14197–14202 (2007).
[CrossRef] [PubMed]

D. B. Spry, A. Goun, K. Glusac, D. E. Moilanen, and M. D. Fayer, “Proton transport and the water environment in nafion fuel cell membranes and AOT reverse micelles,” J. Am. Chem. Soc.129(26), 8122–8130 (2007).
[CrossRef] [PubMed]

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently Controlled Ultrafast Four-Wave Mixing Spectroscopy,” J. Phys. Chem. A111(23), 4873–4883 (2007).
[CrossRef] [PubMed]

T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett.32(22), 3330–3332 (2007).
[CrossRef] [PubMed]

2006 (3)

2004 (1)

J. Bredenbeck, J. Helbing, and P. Hamm, “Labeling vibrations by light: ultrafast transient 2D-IR spectroscopy tracks vibrational modes during photoinduced charge transfer,” J. Am. Chem. Soc.126(4), 990–991 (2004).
[CrossRef] [PubMed]

2003 (1)

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

1997 (1)

1967 (1)

W. Klein and B. Cook, “Unified Approach to Ultrasonic Light Diffraction,” IEEE Trans. Sonics Ultrason.14(3), 123–134 (1967).
[CrossRef]

1966 (1)

E. I. Gordon, “A review of acoustooptical deflection and modulation devices,” Proc. IEEE54(10), 1391–1401 (1966).
[CrossRef]

Asbury, J. B.

R. D. Pensack, K. M. Banyas, L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials,” Phys. Chem. Chem. Phys.11(15), 2575–2591 (2009).
[CrossRef] [PubMed]

Backus, E. H. G.

E. H. G. Backus, R. Bloem, P. M. Donaldson, J. A. Ihalainen, R. Pfister, B. Paoli, A. Caflisch, and P. Hamm, “2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix,” J. Phys. Chem. B114(10), 3735–3740 (2010).
[CrossRef] [PubMed]

Banyas, K. M.

R. D. Pensack, K. M. Banyas, L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials,” Phys. Chem. Chem. Phys.11(15), 2575–2591 (2009).
[CrossRef] [PubMed]

Barbour, L. W.

R. D. Pensack, K. M. Banyas, L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials,” Phys. Chem. Chem. Phys.11(15), 2575–2591 (2009).
[CrossRef] [PubMed]

Bloem, R.

E. H. G. Backus, R. Bloem, P. M. Donaldson, J. A. Ihalainen, R. Pfister, B. Paoli, A. Caflisch, and P. Hamm, “2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix,” J. Phys. Chem. B114(10), 3735–3740 (2010).
[CrossRef] [PubMed]

Bredenbeck, J.

J. Bredenbeck, J. Helbing, and P. Hamm, “Labeling vibrations by light: ultrafast transient 2D-IR spectroscopy tracks vibrational modes during photoinduced charge transfer,” J. Am. Chem. Soc.126(4), 990–991 (2004).
[CrossRef] [PubMed]

Caflisch, A.

E. H. G. Backus, R. Bloem, P. M. Donaldson, J. A. Ihalainen, R. Pfister, B. Paoli, A. Caflisch, and P. Hamm, “2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix,” J. Phys. Chem. B114(10), 3735–3740 (2010).
[CrossRef] [PubMed]

Calabrese, C.

Cheng, M.

Cook, B.

W. Klein and B. Cook, “Unified Approach to Ultrasonic Light Diffraction,” IEEE Trans. Sonics Ultrason.14(3), 123–134 (1967).
[CrossRef]

Donaldson, P. M.

E. H. G. Backus, R. Bloem, P. M. Donaldson, J. A. Ihalainen, R. Pfister, B. Paoli, A. Caflisch, and P. Hamm, “2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix,” J. Phys. Chem. B114(10), 3735–3740 (2010).
[CrossRef] [PubMed]

Dugan, M. A.

Elsaesser, T.

M. Yang, Ł. Szyc, and T. Elsaesser, “Vibrational dynamics of the water shell of DNA studied by femtosecond two-dimensional infrared spectroscopy,” J. Photochem. Photobiol., A234, 49–56 (2012).
[CrossRef]

Engel, G. S.

A. F. Fidler, E. Harel, and G. S. Engel, “Dissecting Hidden Couplings Using Fifth-Order Three-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett.1(19), 2876–2880 (2010).
[CrossRef]

Fayer, M. D.

D. B. Spry, A. Goun, K. Glusac, D. E. Moilanen, and M. D. Fayer, “Proton transport and the water environment in nafion fuel cell membranes and AOT reverse micelles,” J. Am. Chem. Soc.129(26), 8122–8130 (2007).
[CrossRef] [PubMed]

Fidler, A. F.

A. F. Fidler, E. Harel, and G. S. Engel, “Dissecting Hidden Couplings Using Fifth-Order Three-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett.1(19), 2876–2880 (2010).
[CrossRef]

Fleming, G. R.

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys.386(1-3), 1–22 (2011).
[CrossRef]

Fuji, T.

Fulmer, E. C.

Ganim, Z.

Z. Ganim, K. C. Jones, and A. Tokmakoff, “Insulin dimer dissociation and unfolding revealed by amide I two-dimensional infrared spectroscopy,” Phys. Chem. Chem. Phys.12(14), 3579–3588 (2010).
[CrossRef] [PubMed]

Glusac, K.

D. B. Spry, A. Goun, K. Glusac, D. E. Moilanen, and M. D. Fayer, “Proton transport and the water environment in nafion fuel cell membranes and AOT reverse micelles,” J. Am. Chem. Soc.129(26), 8122–8130 (2007).
[CrossRef] [PubMed]

Gordon, E. I.

E. I. Gordon, “A review of acoustooptical deflection and modulation devices,” Proc. IEEE54(10), 1391–1401 (1966).
[CrossRef]

Goun, A.

D. B. Spry, A. Goun, K. Glusac, D. E. Moilanen, and M. D. Fayer, “Proton transport and the water environment in nafion fuel cell membranes and AOT reverse micelles,” J. Am. Chem. Soc.129(26), 8122–8130 (2007).
[CrossRef] [PubMed]

Hamm, P.

E. H. G. Backus, R. Bloem, P. M. Donaldson, J. A. Ihalainen, R. Pfister, B. Paoli, A. Caflisch, and P. Hamm, “2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix,” J. Phys. Chem. B114(10), 3735–3740 (2010).
[CrossRef] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Labeling vibrations by light: ultrafast transient 2D-IR spectroscopy tracks vibrational modes during photoinduced charge transfer,” J. Am. Chem. Soc.126(4), 990–991 (2004).
[CrossRef] [PubMed]

Harel, E.

A. F. Fidler, E. Harel, and G. S. Engel, “Dissecting Hidden Couplings Using Fifth-Order Three-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett.1(19), 2876–2880 (2010).
[CrossRef]

Hegadorn, M.

R. D. Pensack, K. M. Banyas, L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials,” Phys. Chem. Chem. Phys.11(15), 2575–2591 (2009).
[CrossRef] [PubMed]

Helbing, J.

J. Bredenbeck, J. Helbing, and P. Hamm, “Labeling vibrations by light: ultrafast transient 2D-IR spectroscopy tracks vibrational modes during photoinduced charge transfer,” J. Am. Chem. Soc.126(4), 990–991 (2004).
[CrossRef] [PubMed]

Hornung, T.

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently Controlled Ultrafast Four-Wave Mixing Spectroscopy,” J. Phys. Chem. A111(23), 4873–4883 (2007).
[CrossRef] [PubMed]

Ihalainen, J. A.

E. H. G. Backus, R. Bloem, P. M. Donaldson, J. A. Ihalainen, R. Pfister, B. Paoli, A. Caflisch, and P. Hamm, “2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix,” J. Phys. Chem. B114(10), 3735–3740 (2010).
[CrossRef] [PubMed]

Ishizaki, A.

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys.386(1-3), 1–22 (2011).
[CrossRef]

Jones, K. C.

Z. Ganim, K. C. Jones, and A. Tokmakoff, “Insulin dimer dissociation and unfolding revealed by amide I two-dimensional infrared spectroscopy,” Phys. Chem. Chem. Phys.12(14), 3579–3588 (2010).
[CrossRef] [PubMed]

Keusters, D.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Khalil, M.

Klein, W.

W. Klein and B. Cook, “Unified Approach to Ultrasonic Light Diffraction,” IEEE Trans. Sonics Ultrason.14(3), 123–134 (1967).
[CrossRef]

Krummel, A. T.

A. T. Krummel and M. T. Zanni, “DNA vibrational coupling revealed with two-dimensional infrared spectroscopy: insight into why vibrational spectroscopy is sensitive to DNA structure,” J. Phys. Chem. B110(28), 13991–14000 (2006).
[CrossRef] [PubMed]

Lewis, K. L. M.

K. L. M. Lewis and J. P. Ogilvie, “Probing Photosynthetic Energy and Charge Transfer with Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett.3(4), 503–510 (2012).
[CrossRef]

Ling, Y. L.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A.104(36), 14197–14202 (2007).
[CrossRef] [PubMed]

Matsika, S.

Middleton, C. T.

C. T. Middleton, A. M. Woys, S. S. Mukherjee, and M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods52(1), 12–22 (2010).
[CrossRef] [PubMed]

Moilanen, D. E.

D. B. Spry, A. Goun, K. Glusac, D. E. Moilanen, and M. D. Fayer, “Proton transport and the water environment in nafion fuel cell membranes and AOT reverse micelles,” J. Am. Chem. Soc.129(26), 8122–8130 (2007).
[CrossRef] [PubMed]

Mukherjee, S. S.

C. T. Middleton, A. M. Woys, S. S. Mukherjee, and M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods52(1), 12–22 (2010).
[CrossRef] [PubMed]

Nelson, K. A.

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently Controlled Ultrafast Four-Wave Mixing Spectroscopy,” J. Phys. Chem. A111(23), 4873–4883 (2007).
[CrossRef] [PubMed]

Ogilvie, J. P.

K. L. M. Lewis and J. P. Ogilvie, “Probing Photosynthetic Energy and Charge Transfer with Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett.3(4), 503–510 (2012).
[CrossRef]

Paoli, B.

E. H. G. Backus, R. Bloem, P. M. Donaldson, J. A. Ihalainen, R. Pfister, B. Paoli, A. Caflisch, and P. Hamm, “2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix,” J. Phys. Chem. B114(10), 3735–3740 (2010).
[CrossRef] [PubMed]

Pensack, R. D.

R. D. Pensack, K. M. Banyas, L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials,” Phys. Chem. Chem. Phys.11(15), 2575–2591 (2009).
[CrossRef] [PubMed]

Petersen, P. B.

Pfister, R.

E. H. G. Backus, R. Bloem, P. M. Donaldson, J. A. Ihalainen, R. Pfister, B. Paoli, A. Caflisch, and P. Hamm, “2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix,” J. Phys. Chem. B114(10), 3735–3740 (2010).
[CrossRef] [PubMed]

Reynolds, A.

Schlau-Cohen, G. S.

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys.386(1-3), 1–22 (2011).
[CrossRef]

Shen, L.

Shim, S. H.

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11(5), 748–761 (2009).
[CrossRef] [PubMed]

Shim, S.-H.

Spry, D. B.

D. B. Spry, A. Goun, K. Glusac, D. E. Moilanen, and M. D. Fayer, “Proton transport and the water environment in nafion fuel cell membranes and AOT reverse micelles,” J. Am. Chem. Soc.129(26), 8122–8130 (2007).
[CrossRef] [PubMed]

Stingel, A. M.

Stone, K. W.

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently Controlled Ultrafast Four-Wave Mixing Spectroscopy,” J. Phys. Chem. A111(23), 4873–4883 (2007).
[CrossRef] [PubMed]

Strasfeld, D. B.

Suzaki, Y.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Suzuki, T.

Szyc, L.

M. Yang, Ł. Szyc, and T. Elsaesser, “Vibrational dynamics of the water shell of DNA studied by femtosecond two-dimensional infrared spectroscopy,” J. Photochem. Photobiol., A234, 49–56 (2012).
[CrossRef]

Tian, P.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Tokmakoff, A.

P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett.35(12), 1962–1964 (2010).
[CrossRef] [PubMed]

Z. Ganim, K. C. Jones, and A. Tokmakoff, “Insulin dimer dissociation and unfolding revealed by amide I two-dimensional infrared spectroscopy,” Phys. Chem. Chem. Phys.12(14), 3579–3588 (2010).
[CrossRef] [PubMed]

Tseng, C. H.

Tull, J. X.

Vaughan, J. C.

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently Controlled Ultrafast Four-Wave Mixing Spectroscopy,” J. Phys. Chem. A111(23), 4873–4883 (2007).
[CrossRef] [PubMed]

Warren, W. S.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B14(9), 2348–2358 (1997).
[CrossRef]

Weinacht, T. C.

Widgren, H.

Woys, A. M.

C. T. Middleton, A. M. Woys, S. S. Mukherjee, and M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods52(1), 12–22 (2010).
[CrossRef] [PubMed]

Yang, M.

M. Yang, Ł. Szyc, and T. Elsaesser, “Vibrational dynamics of the water shell of DNA studied by femtosecond two-dimensional infrared spectroscopy,” J. Photochem. Photobiol., A234, 49–56 (2012).
[CrossRef]

Zanni, M. T.

C. T. Middleton, A. M. Woys, S. S. Mukherjee, and M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods52(1), 12–22 (2010).
[CrossRef] [PubMed]

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11(5), 748–761 (2009).
[CrossRef] [PubMed]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A.104(36), 14197–14202 (2007).
[CrossRef] [PubMed]

A. T. Krummel and M. T. Zanni, “DNA vibrational coupling revealed with two-dimensional infrared spectroscopy: insight into why vibrational spectroscopy is sensitive to DNA structure,” J. Phys. Chem. B110(28), 13991–14000 (2006).
[CrossRef] [PubMed]

S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, “Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation,” Opt. Lett.31(6), 838–840 (2006).
[CrossRef] [PubMed]

S.-H. Shim, D. B. Strasfeld, and M. T. Zanni, “Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses,” Opt. Express14(26), 13120–13130 (2006).
[CrossRef] [PubMed]

Chem. Phys. (1)

G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, “Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting,” Chem. Phys.386(1-3), 1–22 (2011).
[CrossRef]

IEEE Trans. Sonics Ultrason. (1)

W. Klein and B. Cook, “Unified Approach to Ultrasonic Light Diffraction,” IEEE Trans. Sonics Ultrason.14(3), 123–134 (1967).
[CrossRef]

J. Am. Chem. Soc. (2)

D. B. Spry, A. Goun, K. Glusac, D. E. Moilanen, and M. D. Fayer, “Proton transport and the water environment in nafion fuel cell membranes and AOT reverse micelles,” J. Am. Chem. Soc.129(26), 8122–8130 (2007).
[CrossRef] [PubMed]

J. Bredenbeck, J. Helbing, and P. Hamm, “Labeling vibrations by light: ultrafast transient 2D-IR spectroscopy tracks vibrational modes during photoinduced charge transfer,” J. Am. Chem. Soc.126(4), 990–991 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol., A (1)

M. Yang, Ł. Szyc, and T. Elsaesser, “Vibrational dynamics of the water shell of DNA studied by femtosecond two-dimensional infrared spectroscopy,” J. Photochem. Photobiol., A234, 49–56 (2012).
[CrossRef]

J. Phys. Chem. A (1)

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, “Coherently Controlled Ultrafast Four-Wave Mixing Spectroscopy,” J. Phys. Chem. A111(23), 4873–4883 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

A. T. Krummel and M. T. Zanni, “DNA vibrational coupling revealed with two-dimensional infrared spectroscopy: insight into why vibrational spectroscopy is sensitive to DNA structure,” J. Phys. Chem. B110(28), 13991–14000 (2006).
[CrossRef] [PubMed]

E. H. G. Backus, R. Bloem, P. M. Donaldson, J. A. Ihalainen, R. Pfister, B. Paoli, A. Caflisch, and P. Hamm, “2D-IR Study of a Photoswitchable Isotope-Labeled α-Helix,” J. Phys. Chem. B114(10), 3735–3740 (2010).
[CrossRef] [PubMed]

J. Phys. Chem. Lett. (2)

A. F. Fidler, E. Harel, and G. S. Engel, “Dissecting Hidden Couplings Using Fifth-Order Three-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett.1(19), 2876–2880 (2010).
[CrossRef]

K. L. M. Lewis and J. P. Ogilvie, “Probing Photosynthetic Energy and Charge Transfer with Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett.3(4), 503–510 (2012).
[CrossRef]

Methods (1)

C. T. Middleton, A. M. Woys, S. S. Mukherjee, and M. T. Zanni, “Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy,” Methods52(1), 12–22 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Phys. Chem. Chem. Phys. (3)

S. H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys.11(5), 748–761 (2009).
[CrossRef] [PubMed]

R. D. Pensack, K. M. Banyas, L. W. Barbour, M. Hegadorn, and J. B. Asbury, “Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials,” Phys. Chem. Chem. Phys.11(15), 2575–2591 (2009).
[CrossRef] [PubMed]

Z. Ganim, K. C. Jones, and A. Tokmakoff, “Insulin dimer dissociation and unfolding revealed by amide I two-dimensional infrared spectroscopy,” Phys. Chem. Chem. Phys.12(14), 3579–3588 (2010).
[CrossRef] [PubMed]

Proc. IEEE (1)

E. I. Gordon, “A review of acoustooptical deflection and modulation devices,” Proc. IEEE54(10), 1391–1401 (1966).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A.104(36), 14197–14202 (2007).
[CrossRef] [PubMed]

Science (1)

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science300(5625), 1553–1555 (2003).
[CrossRef] [PubMed]

Other (2)

J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” in Ultrafast Phenomena XVI, Springer Series in Chemical Physics (Springer, 2009), Vol. 92, pp. 956–958.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Illustrations of Bragg deflections in an AOM crystal for spatially separated frequencies of light using a constant frequency acoustic wave (A) and a Bragg angle compensated acoustic wave (B). The solid and dashed lines in the AOM crystal represent the acoustic wave. The different frequencies of light, each represented by different colors, all enter the device at the same angle, θB.

Fig. 2
Fig. 2

Intensity autocorrelations of mid-IR pulses. Panel A compares the measured autocorrelations for mid-IR pulses traveling through the shaper device in a variety of configurations compared to mid-IR pulses not passing through the shaper. Only a combination of a Bragg angle corrected waveform and GVD/TOD corrections produce pulses with comparable pulse durations to the unmodified pulses. Panel B compared shaped pulses generated with and without the Bragg angle compensation. Both configurations were measured using GVD and TOD corrections optimized for the waveform type used. All autocorrelations are normalized.

Fig. 3
Fig. 3

(A) Intensity autocorrelations of mid-IR pulse pairs generated using a Bragg angle corrected double pulse mask with pulse pair separations of 0.5 ps, 1 ps, 2 ps, and 3 ps. All autocorrelations are normalized time zero peak. (B) FTIR and 2D-IR spectrum of the carbonyl stretch in W(CO)6 in hexane using the active Bragg-angle compensating pulse pair mask and phase cycling to remove transient absorption and scatter.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

M(ω)= 1 2 ( e i φ 1 + e i(τω+ φ 2 ) )
Waveform(t)= M amp sin( f c t+ M φ )
sin θ B = λf 2vn(λ)
C=2vsin θ B = λ 0 f c n( λ 0 )
λf(λ) n(λ) =C= λ 0 f c n( λ 0 )
f(λ)= λ 0 f c n(λ) λn( λ 0 )
Waveform(t)= M amp (t)sin(2πf(λ)t+ M φ (t))
Waveform(t)= M amp (t)sin(ϕ(t)+ M φ (t))
ϕ(t)= ϕ 0 +2π 0 t f(τ) dτ
Waveform(t)= M amp (t)sin( ϕ 0 +2π 0 t f λ (τ) dτ+ M φ (t))

Metrics