Abstract

We describe out-coupling of visible band light from a tapered hollow waveguide with TiO2/SiO2 Bragg cladding mirrors. The mirrors exhibit an omnidirectional band for TE-polarized modes in the ~490 to 570 nm wavelength range, resulting in near-vertical radiation at mode cutoff positions. Since cutoff is wavelength-dependent, white light is spatially dispersed by the taper. Resolution on the order of 2 nm is predicted and corroborated by experimental results. These tapers can potentially form the basis for compact micro-spectrometers in lab-on-a-chip and optofluidic micro-systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
    [CrossRef] [PubMed]
  2. T. Jiang, J. Zhao, and Y. Feng, “Stopping light by an air waveguide with anisotropic metamaterial cladding,” Opt. Express17(1), 170–177 (2009).
    [CrossRef] [PubMed]
  3. X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, “Trapped rainbow effect in visible light left-handed heterostructures,” Appl. Phys. Lett.95(7), 071111 (2009).
    [CrossRef]
  4. W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
    [CrossRef]
  5. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express18(2), 598–623 (2010).
    [CrossRef] [PubMed]
  6. M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett.107(20), 207401 (2011).
    [CrossRef] [PubMed]
  7. J. He, Y. Jin, Z. Hong, and S. He, “Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding,” Opt. Express16(15), 11077–11082 (2008).
    [CrossRef] [PubMed]
  8. V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett.96(21), 211121 (2010).
    [CrossRef]
  9. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A.108(13), 5169–5173 (2011).
    [CrossRef] [PubMed]
  10. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys.40(9), 2666–2670 (2007).
    [CrossRef]
  11. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett.23(20), 1573–1575 (1998).
    [CrossRef] [PubMed]
  12. M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett.85(9), 1466–1468 (2004).
    [CrossRef]
  13. M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett.34(8), 1252–1254 (2009).
    [CrossRef] [PubMed]
  14. N. Ponnampalam and R. G. DeCorby, “Out-of-plane coupling at mode cutoff in tapered hollow waveguides with omnidirectional reflector claddings,” Opt. Express16(5), 2894–2908 (2008).
    [CrossRef] [PubMed]
  15. R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express17(19), 16632–16645 (2009).
    [CrossRef] [PubMed]
  16. H. Dalir, Y. Yokota, and F. Koyama, “Spatial mode multiplexer/demultiplexer based on tapered hollow waveguide,” in The 16th Opto-Electronics and Communications Conference (OECC, 2011), pp.491–492.
  17. Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
    [CrossRef] [PubMed]
  18. M. Deopura, C. K. Ullal, B. Temelkuran, and Y. Fink, “Dielectric omnidirectional visible reflector,” Opt. Lett.26(15), 1197–1199 (2001).
    [CrossRef] [PubMed]
  19. S. Y. Kim, “Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods,” Appl. Opt.35(34), 6703–6707 (1996).
    [CrossRef] [PubMed]
  20. S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun.239(1-3), 153–160 (2004).
    [CrossRef]
  21. J. Gao, A. M. Sarangan, and Q. Zhan, “Experimental confirmation of strong fluorescence enhancement using one-dimensional GaP/SiO2 photonic band gap structure,” Opt. Mater. Express1(7), 1216–1223 (2011).
    [CrossRef]

2012

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

2011

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A.108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett.107(20), 207401 (2011).
[CrossRef] [PubMed]

J. Gao, A. M. Sarangan, and Q. Zhan, “Experimental confirmation of strong fluorescence enhancement using one-dimensional GaP/SiO2 photonic band gap structure,” Opt. Mater. Express1(7), 1216–1223 (2011).
[CrossRef]

2010

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett.96(21), 211121 (2010).
[CrossRef]

W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
[CrossRef]

J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express18(2), 598–623 (2010).
[CrossRef] [PubMed]

2009

2008

2007

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys.40(9), 2666–2670 (2007).
[CrossRef]

2004

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett.85(9), 1466–1468 (2004).
[CrossRef]

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun.239(1-3), 153–160 (2004).
[CrossRef]

2001

1998

1996

Allen, T.

Atwater, H.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett.107(20), 207401 (2011).
[CrossRef] [PubMed]

Banyal, R. K.

W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
[CrossRef]

Bartoli, F. J.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A.108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

Biqin, H.

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun.239(1-3), 153–160 (2004).
[CrossRef]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Casse, B. D. F.

W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
[CrossRef]

Cheng, X. C.

X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, “Trapped rainbow effect in visible light left-handed heterostructures,” Appl. Phys. Lett.95(7), 071111 (2009).
[CrossRef]

Cooper, J.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

DeCorby, R. G.

Deopura, M.

Ding, Y. J.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A.108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

Epp, E.

Fan, S.

Feng, Y.

Fink, Y.

Fu, Q. H.

X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, “Trapped rainbow effect in visible light left-handed heterostructures,” Appl. Phys. Lett.95(7), 071111 (2009).
[CrossRef]

Gan, Q.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A.108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

Gao, J.

Gao, Y.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A.108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

Glidle, A.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

He, J.

He, S.

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Hong, Z.

Hu, Z.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Huang, J. X.

X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, “Trapped rainbow effect in visible light left-handed heterostructures,” Appl. Phys. Lett.95(7), 071111 (2009).
[CrossRef]

Huang, Y. J.

W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
[CrossRef]

Ibanescu, M.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett.85(9), 1466–1468 (2004).
[CrossRef]

Ironside, C. N.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Jang, M. S.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett.107(20), 207401 (2011).
[CrossRef] [PubMed]

Jiang, T.

Jin, Y.

Joannopoulos, J. D.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett.85(9), 1466–1468 (2004).
[CrossRef]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett.23(20), 1573–1575 (1998).
[CrossRef] [PubMed]

Johnson, S. G.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett.85(9), 1466–1468 (2004).
[CrossRef]

Kildishev, A. V.

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett.96(21), 211121 (2010).
[CrossRef]

Kim, K.-Y.

Kim, S. Y.

Koyama, F.

Krauss, T. F.

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys.40(9), 2666–2670 (2007).
[CrossRef]

Kumar, M.

Lee, B.

Lee, I.-M.

Lee, S.-Y.

Lu, W. T.

W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
[CrossRef]

Luo, C. R.

X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, “Trapped rainbow effect in visible light left-handed heterostructures,” Appl. Phys. Lett.95(7), 071111 (2009).
[CrossRef]

Luo, W.

X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, “Trapped rainbow effect in visible light left-handed heterostructures,” Appl. Phys. Lett.95(7), 071111 (2009).
[CrossRef]

McMullin, J. N.

Na, H.

Park, J.

Peifu, G.

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun.239(1-3), 153–160 (2004).
[CrossRef]

Ponnampalam, N.

Povinelli, M. L.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett.85(9), 1466–1468 (2004).
[CrossRef]

Sakaguchi, T.

Sarangan, A. M.

Shalaev, V. M.

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett.96(21), 211121 (2010).
[CrossRef]

Smolyaninov, I. I.

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett.96(21), 211121 (2010).
[CrossRef]

Smolyaninova, V. N.

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett.96(21), 211121 (2010).
[CrossRef]

Song, K.

X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, “Trapped rainbow effect in visible light left-handed heterostructures,” Appl. Phys. Lett.95(7), 071111 (2009).
[CrossRef]

Sorel, M.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Sridhar, S.

W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
[CrossRef]

Strain, M. J.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Temelkuran, B.

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Ullal, C. K.

Vezenov, D.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A.108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

Wagner, K.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A.108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

Weidong, S.

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun.239(1-3), 153–160 (2004).
[CrossRef]

Winn, J. N.

Xiangdong, L.

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun.239(1-3), 153–160 (2004).
[CrossRef]

Xu, L.

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun.239(1-3), 153–160 (2004).
[CrossRef]

Yin, H.

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Yong, Z.

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun.239(1-3), 153–160 (2004).
[CrossRef]

Zhan, Q.

Zhao, J.

Zhao, X. P.

X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, “Trapped rainbow effect in visible light left-handed heterostructures,” Appl. Phys. Lett.95(7), 071111 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, “Trapped rainbow effect in visible light left-handed heterostructures,” Appl. Phys. Lett.95(7), 071111 (2009).
[CrossRef]

W. T. Lu, Y. J. Huang, B. D. F. Casse, R. K. Banyal, and S. Sridhar, “Storing light in active optical waveguides with single-negative materials,” Appl. Phys. Lett.96(21), 211112 (2010).
[CrossRef]

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Experimental observation of the trapped rainbow,” Appl. Phys. Lett.96(21), 211121 (2010).
[CrossRef]

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett.85(9), 1466–1468 (2004).
[CrossRef]

J. Phys. D Appl. Phys.

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys.40(9), 2666–2670 (2007).
[CrossRef]

Lab Chip

Z. Hu, A. Glidle, C. N. Ironside, M. Sorel, M. J. Strain, J. Cooper, and H. Yin, “Integrated microspectrometer for fluorescence based analysis in a microfluidic format,” Lab Chip12(16), 2850–2857 (2012).
[CrossRef] [PubMed]

Nature

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Opt. Commun.

S. Weidong, L. Xiangdong, H. Biqin, Z. Yong, L. Xu, and G. Peifu, “Analysis on the tunable optical properties of MOEMS filter based on Fabry-Perot cavity,” Opt. Commun.239(1-3), 153–160 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Phys. Rev. Lett.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett.107(20), 207401 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A.108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

Other

H. Dalir, Y. Yokota, and F. Koyama, “Spatial mode multiplexer/demultiplexer based on tapered hollow waveguide,” in The 16th Opto-Electronics and Communications Conference (OECC, 2011), pp.491–492.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic illustration of ray guidance in a slowly tapered air-core Bragg waveguide. Light within the omnidirectional band of the mirrors is adiabatically transformed from a guided mode to a vertical Fabry-Perot mode at cutoff. (b) Predicted reflectance of the TiO2/SiO2 mirrors used in the present work (silicon substrate), for TE-polarized light at incidence angles of 0, 20, and 75 degrees. Layer thicknesses were assumed to be 61 nm and 90 nm for TiO2 and SiO2, respectively. The symbols are experimental data at 20 degrees.

Fig. 2
Fig. 2

(a) Schematic illustration of a tapered slab Bragg waveguide fabricated by bonding a glass substrate to a patterned Si substrate. (b) SEM image showing the end facet (wide end) of a taper. For scale reference, the spacing between adjacent SU-8 posts is 150 μm.

Fig. 3
Fig. 3

(a) Microscope photograph showing a taper (~3 mm long) in its entirety, with white light coupled into the wide end of the taper, at the left side of the image. Approximately 20 partly overlapping rainbow bands are visible, each one associated with cut-off of a particular mode order (see text). The two lowest mode orders at the right appear dimmer because they are partly obscured by epoxy. (b) A higher magnification image of some ‘rainbows’ is shown. For sufficiently low mode orders on the right, the FSR is large enough such that the full range of colors (yellow, green, cyan-blue) within the cladding omnidirectional band is well resolved.

Fig. 4
Fig. 4

(a) Camera image of the light radiated from the taper with simultaneous input (at the left) of 532 nm and 543 nm wavelength laser light. Each pair of lines corresponds to the cutoff position of a particular mode order; mode order decreases towards the right. (b) Plot of the spacing (Δz) between cutoff positions of the two lasers, versus the mode order.

Fig. 5
Fig. 5

(a) Column-wise averaged pixel intensity versus z, for the m = 6 cutoff lines of the simultaneously launched 543 nm and 532 nm lasers (b) As in part (a), but for the m = 7 lines.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dλ z p D T + λ mπ( R /( 1R ) ) ,
D T = Δz Δλ = Δz Δd Δd Δλ ( 1 S T )( K+ m 2 ),

Metrics